
【最新版】高考数学理一轮复习:常考客观题——基础快速练1.doc
6页▲▲最新版教学资料—数学▲▲常考客观题——基础快速练(一)1.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为 ( ). A.0 B.1 C.2 D.4解析 ∵A={0,2,a},B={1,a2},A∪B={0,1,2,4,16},∴∴a=4,故选D.答案 D2.已知复数z1=2+i,z2=1-i,则z=z1·z2在复平面上对应的点位于 ( ).A.第一象限 B.第二象限C.第三象限 D.第四象限解析 ∵z1·z2=3-i,故选D.答案 D3.已知向量|a|=10,|b|=12,且a·b=-60,则向量a与b的夹角为 ( ).A.60° B.120° C.135° D.150°解析 由a·b=|a||b|cos θ=-60⇒cos θ=-,故θ=120°.答案 B4.已知直线l经过坐标原点,且与圆x2+y2-4x+3=0相切,切点在第四象限,则直线l的方程为( ).A.y=-x B.y=xC.y=-x D.y=x解析 如图所示,可知AC=1,CO=2,AO=,∴tan∠AOC=,所以切线为y=-x.答案 C5.甲、乙、丙、丁四人参加奥运会射击项目选拔赛,四人的平均成绩和方差如下表所示:甲乙丙丁平均环数8.68.98.98.2方差s23.53.52.15.6从这四个人中选择一人参加奥运会射击项目比赛,最佳人选是( ).A.甲 B.乙 C.丙 D.丁解析 方差越小,说明该运动员发挥越稳定,故选C.答案 C6.如果执行右图的程序框图,若输入n=6,m=4,那么输出的p等于( ).A.720 B.360C.240 D.120解析 p1=3,p2=12,p3=60,p4=360,此时m=k,结束,所以输出结果为360.答案 B7.在等比数列{an}中,a5·a11=3,a3+a13=4,则等于( ).A.3 B. C.3或 D.-3或-解析 ∵a5·a11=a3·a13=3,a3+a13=4,∴a3=1,a13=3或a3=3,a13=1,∴==3或,故选C.答案 C8.设实数x和y满足约束条件则z=2x+3y的最小值为( ).A.26 B.24 C.16 D.14解析 根据约束条件,可得三条直线的交点坐标为A(6,4),B(4,6),C(4,2),将三个坐标分别代入目标函数,可得最小值为目标函数线过点C时取得,即最小值为zmin=2×4+3×2=14.答案 D9.(2014·湖北七市联考)我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架舰载机准备着舰.如果甲、乙2机必须相邻着舰,而丙、丁不能相邻着舰,那么不同的着舰方法有( ).A.12种 B.18种 C.24种 D.48种解析 先将甲、乙捆绑,然后将其与除甲、乙、丙、丁外的第5架舰载机全排列,再将丙、丁插空,最后将甲、乙松绑,故不同的着舰方法共有A·A·A=24(种).答案 C10.甲、乙两人各写一张贺年卡,随意送给丙、丁两人中的一人,则甲、乙将贺年卡送给同一人的概率是( ).A. B. C. D.解析 (甲送给丙,乙送给丁),(甲送给丁,乙送给丙),(甲、乙都送给丙),(甲、乙都送给丁),共四种情况,其中甲、乙将贺年卡送给同一人的情况有两种,所以P==.答案 A11.已知双曲线-=1(a>0,b>0)与抛物线y2=8x有一个公共的焦点F,且两曲线的一个交点为P,若|PF|=5,则双曲线的离心率为( ).A.2 B.2 C. D.解析 因为y2=8x的焦点为F(2,0),所以a2+b2=4①,又因为|PF|=5,所以点P(x,y)到准线的距离也是5,即+x=5,而p=4,∴x=3,所以P(3,2),代入双曲线方程,得-=1②,由①②得a4-37a2+36=0,解得a2=1或a2=36(舍去),所以a=1,b=,所以离心率e==2,故选A.答案 A12.已知函数y=f(x)(x∈R)满足f(x+3)=f(x+1)且当x∈[-1,1]时,f(x)=x2,则y=f(x)与y=log7x的图象的交点个数为( ).A.3 B.4 C.5 D.6解析 由f(x+3)=f(x+1)⇒f(x+2)=f(x),可知函数的最小正周期为2,故f(1)=f(3)=f(5)=f(7)=1,当x∈[-1,1]时,函数f(x)=x2的值域为{y|0≤y≤1},当x=7时,函数y=log7x的值为y=log77=1,故可知在区间[0,7]之间,两函数图象有6个交点.答案 D13.设函数f(x)=若f(x)>4,则x的取值范围是________.解析 当x<1时,由2-x>4,得x<-2,当x≥1时,由x2>4,得x>2,综上所述,解集为(-∞,-2)∪(2,+∞).答案 (-∞,-2)∪(2,+∞)14.一简单组合体的三视图及尺寸如图所示(单位:cm),则该组合体的体积为________cm3.解析 该组合体的体积为50×40×20+10×40×60=64 000(cm3).答案 64 00015.已知命题p:∃x∈R,x2+2x+a≤0.若命题p是假命题,则实数a的取值范围是________.(用区间表示)解析 据题意知x2+2x+a>0恒成立,故有4-4a<0,解得a>1.答案 (1,+∞)16.△ABC的三个内角A,B,C所对边的长分别为a,b,c,已知c=3,C=,a=2b,则b的值为________.解析 ∵c2=a2+b2-2abcos C,∴9=a2+b2-2abcos ,因为a=2b,可得b2=3,∴b=.答案 。












