
第六章(二)光形态建成.ppt
39页第六章(二) 光形态建成,,,Light has profound effects on the development of plants. ⑴光是绿色植物光合作用所必需的; ⑵光调节植物整个生长发育 光形态建成(photomorphogenesis) :The light-mediated changes in plant growth and development are called photomorphogenesis. 依赖光控制细胞的分化、结构和功能的改变、最终汇集成组织和器官的建成,亦称光控制发育过程 它是低能反应,光只作为一个信号去激发光受体,推 动细胞内的一系列反应,最终表现为形态结构的变化光受体(Photoreceptor): ⑴ 光敏色素(Phytochrome ):红光及远红光 ⑵隐花色素(Cryptochromes ):蓝光和近紫外光 ⑶UV-B受体(UV-specific photoreceptors ):紫外光B区域,第一节 光敏色素的发现和分布,一、Brief History of Phytochrome Research,1918 -Garner and Allard - Maryland Mammoth Tobacco, a spontaneous giant strain of tobacco that wouldn't flower in the field. Discovered that flowering was controlled by photoperiod. It has been estimated that about $10,000 was spent over 10 years on the research that led to the discovery of photoperiodism(光周期反应).,Brief History of Phytochrome Research,1930 -Site of induction is the leaf. Florigen/antiflorigen hypothesis (成花素假说)developed. 1940 -Borthwick, Parker and Hendricks built the Beltsville spectrograph. Discover that red light is the most effective night break for inhibiting flowering in SDP and for promoting flowering in LDP. Suggested same pigment for different type of plants.,Brief History of Phytochrome Research,1952,红光促进种子发芽,而远红光抑制之。
1950s -Vivian Toole, Borthwick, Hendricks find that far-red light inhibits germination in lettuce seed and that the response was red/far-red reversible. Pr/Pfr model proposed.,1959,美国Butlerd等发现: 黄化玉米的幼苗 经红光处理后,红光吸收减少,远红红光吸收增加; 用远红光处理,则相反; 若轮流照射,吸收光谱多次可逆的变化说明:红光-远红光可逆反应的光受体可能是存在两种形式的单一色素 1964 , Siegelman and Firer :phytochrome from etiolated oats (Avena sativa) was reported,Brief History of Phytochrome Research,Brief History of Phytochrome Research,1980 -Dimer model proposed to explain wide fluence range and very low fluence response. 1983 - Vierstra and Quail reported successful purification of fully intact, native phytochrome from etiolated oat seedlings .,1990 -Five phy genes identified in Arabidopsis. Multiple phy genes identified in many species. 2000 -Phytochrome research finds itself intertwined with research on blue light receptors, protein turnover control, plant hormone biosynthesis, and many other developmental and signal transduction processes.,Brief History of Phytochrome Research,二、光敏色素的分布,植物各个器官均有分布,黄化幼苗中含量较高; 各种植物的分生组织和根尖等部分较多。
光敏色素与膜系统结合,分布在质膜、线粒体膜、 核膜、叶绿体膜和内质网膜上第二节 光敏色素的化学性质和光化学转换,一、光敏色素的化学性质,Native phytochrome is a soluble protein with a molecular mass of about 250 kDa. It occurs as a dimer made up of two equivalent subunits. Each subunit consists of two components: a light-absorbing pigment molecule called the chromophore, and a polypeptide chain called the apoprotein. 是易溶解于水的色素蛋白,由2个亚基组成二聚体,每个亚基有两个组成部分:生色团 和 脱辅基蛋白 1、生色团(chromophore) : 是一长链状的4个吡咯环,具有独特的吸光特性,并与蛋白质紧密结合,有两种类型: ⑴红光吸收型(Pr): ⑵远红光吸收型(Pfr):,,⑴红光吸收型(Pr): 吸收峰在660nm,是生理失活型,比较稳定, 吸收660nm红光后转变为Pfr型。
⑵远红光吸收型(Pfr): 730nm,是生理激活型,不稳定,吸收730nm 远红光后逆转为Pr型 Pr Pfr,,,,红光,远红光,,2、脱辅基蛋白: The apoprotein monomer has a molecular mass of about 125 kDa. it is attached to the chromophore through a thioether linkage to a cysteine residue ( 其 Cys 通过硫醚键与生色团相连接) 3、光敏色素的合成与装配 生色团在黑暗条件下在质体中合成,合成后被动运输 到胞质,与脱辅基蛋白装配成光敏色素全蛋白质Structure of the Pr and Pfr forms of the chromophore (phytochromobilin) and the peptide region bound to the chromophore through a thioether linkage. The chromophore undergoes a cis-trans isomerization at carbon 15 in response to red and far-red light. (After Andel et al. 1997.),二、光敏色素基因和分子多型性,多基因家族编码,至少有5个基因:PHYA~E (in Arabidopsis. ) 类型Ⅰ光敏色素: 多存在于黄化幼苗内,见光易分解,由PHYA编码; PHYA的表达受光的负调节。
类型Ⅱ光敏色素: 光下较稳定存在、在绿色幼苗中含量很少的光敏色素,由PHYB~E编码 ,不受光影响,组成性表达Etiolated characteristics Distinct “apical hook“ (dicot) or coleoptile (monocot) No leaf growth No chlorophyll Rapid stem elongation Limited radial expansion of stem Limited root elongation Limited production of lateral roots,De-etiolated characteristics Apical hook opens or coleoptile splits open Leaf growth promoted Chlorophyll produced Stem elongation suppressed Radial expansion of stem Root elongation promoted Lateral root development accelerated,三、光敏色素的光化学转换,1 光稳平衡(photostationary equilibrium): 指在一定波长下,具生理活性的Pfr型浓度与总光敏 色素浓度的比值,用Ф表示。
Ф = Pfr /(Pr+ Pfr) 自然条件下, Ф为0.01~0.05时,就可引起显著的生理变化 Pr与Pfr的转变过程中,包括光反应和暗反应,光反应 局限于生色团,黑暗反应只有在含水条件下才能发生,所以干种子无光敏色素反应,而用水浸泡后的种子有光敏色素反应2 光化学转换: 前体 Pr Pfr [Pfr·X] 生理反应,,,,,,,,暗逆转,蛋白酶,降解、破坏,660,730,合成,[X],信号放大,转导,第三节 光敏色素的生理作用和反应类型,一、光敏色素的生理作用 影响植物一生的形态建成,如种子萌发、根原基起始、叶分化和扩大、向光敏感性、节间延长、花色素形成、花诱导、光周期、性别表现等 二、光敏色素和植物激素 光: 体外调节因子 植物激素:体内调节因子,1、红光使自由生长素含量减少 原因: a、影响合成 b、影响从合成部位外送 c、调节自由态与束缚态的比例 2、调节GA的生物合成和敏感性 3、红光刺激,提高CTK含量 4、调节ETH生物合成: 红光抑制,而远红光促进,三、光敏色素调节的反应类型,1、极低辐照度反应(very low fluence response,VLFR) 可被1~100nmol/m2的光诱导, Ф=0.02就可;反比定律: 反应的程度与光辐照度和光照时间的成积成正比。
2、低辐照度反应(low fluence response VLFR) 亦称为诱导反应, 所需的光能量为1~1000μmol/m2 是典型的红光—远红光可逆反应,可被短暂的红闪光诱导,并可被随后的远红光照射所逆转 在未达到光饱和时,反应也遵守反比定律3、高辐照度反应 (high irradiance response, HIR) 亦称高光照反应,需持续的强光照,其饱和光照比 低幅照度反应强100倍以上 光照时间愈长,反应程度愈大,不遵守反比定律 红光反应亦不能被远红光逆转 其引起的光形态建成有: 花色素苷的形成。