
3-1 比例线段 课件 湘教版九年级数学上册.pptx
35页3.1 3.1 比例线段比例线段第第3 3章章 图形的相似图形的相似逐点逐点导讲练导讲练课堂课堂小结小结作业作业提升提升课时讲解1课时流程2u比例的基本性质比例的基本性质u成比例线段成比例线段u黄金分割黄金分割知知识点点比例的基本性质比例的基本性质知知1 1讲讲1知知1 1讲讲知知1 1讲讲知知1 1讲讲知知1 1讲讲这是等比性质成立的前提这是等比性质成立的前提知知1 1讲讲知知1 1讲讲知知1 1讲讲知知1 1练练例1解题秘方:解题秘方:紧扣紧扣“比例的定义比例的定义”列比例式求解列比例式求解.知知1 1练练答案:答案:B知知1 1练练知知1 1练练解题秘方:解题秘方:紧扣紧扣“比例的基本性质比例的基本性质”用消元法或用消元法或参数法求解参数法求解.例2知知1 1练练教你一招教你一招利用比例的基本性质求代数式的值的方法:利用比例的基本性质求代数式的值的方法:1.消消元元法法,即即用用含含有有同同一一个个字字母母的的代代数数式式表表示示其其他他的的字母,然后代入求值;字母,然后代入求值;2.参参数数法法,即即当当条条件件中中出出现现多多个个比比值值相相等等时时,根根据据比比例例式式设设出出合合适适的的参参数数,然然后后用用含含此此参参数数的的代代数数式式表表示出相应的字母,再代入代数式求值示出相应的字母,再代入代数式求值.知知1 1练练知知2 2讲讲知知识点点成比例线段成比例线段2知知2 2讲讲2.成比例线段:成比例线段:在四条线段中,如果其中两条线段的比等于另在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫作成比例线段,外两条线段的比,那么这四条线段叫作成比例线段,简称为比例线段简称为比例线段.知知2 2讲讲特别提醒特别提醒判判断断四四条条线线段段是是否否成成比比例例,首首先先统统一一单单位位,然然后后将将这这四四条条线线段段按按长长度度的的大大小小顺顺序序排排列列,计计算算前前两两条线段的比值和后两条线段的比值是否相等即可条线段的比值和后两条线段的比值是否相等即可.知知2 2练练某市的两个旅游景区之间的距离为某市的两个旅游景区之间的距离为105 km,在一张,在一张比例尺为比例尺为1 2 000 000的交通旅游图上,它们之间的的交通旅游图上,它们之间的距离大约相当于距离大约相当于()A.一根火柴的长度一根火柴的长度 B.一支钢笔的长度一支钢笔的长度C.一支铅笔的长度一支铅笔的长度 D.一根筷子的长度一根筷子的长度例3知知2 2练练答案:答案:A解题秘方:解题秘方:根据根据“图上距离图上距离 实际距离实际距离1 2 000 000”列方列方程求解程求解.解:解:设图上距离为设图上距离为x cm,则则x 10 500 0001 2 000 000,解得解得x5.25.所以它们之间的图上距离为所以它们之间的图上距离为5.25 cm,约为一根火柴的长度,约为一根火柴的长度.特别提醒特别提醒在在列列式式进进行行计计算算时时,容容易易忽忽视视单单位位的的统统一一,而而出现错误出现错误.知知2 2练练知知2 2练练下列各组不同长度的线段中,是成比例线段的是下列各组不同长度的线段中,是成比例线段的是()A.3 cm,6 cm,7 cm,9 cm B.2 cm,5 cm,0.6 dm,8 cmC.3 cm,9 cm,1.8 dm,6 cm D.1 cm,2 cm,3 cm,4 cm例4解题秘方:解题秘方:紧扣紧扣“成比例线段的定义成比例线段的定义”进行判断进行判断.知知2 2练练答案:答案:C知知2 2练练解题通法解题通法判断四条线段是否是成比例线段的方法:判断四条线段是否是成比例线段的方法:先将线段长度统一单位并按长度的大小排序,然后,先将线段长度统一单位并按长度的大小排序,然后,方法方法1:判断前两条线段的比是否与后两条线段的比相等;:判断前两条线段的比是否与后两条线段的比相等;方方法法2:判判断断最最长长的的线线段段与与最最短短的的线线段段的的乘乘积积是是否否与与另另外外两条线段的乘积相等两条线段的乘积相等.若若相相等等,则则这这四四条条线线段段为为成成比比例例线线段段;若若不不相相等等,则则这这四四条线段不是成比例线段条线段不是成比例线段.知知3 3讲讲知知识点点黄金分割黄金分割31.把一条线段把一条线段AB分成不相等的两部分,使其中较短线段分成不相等的两部分,使其中较短线段CB与较长线段与较长线段AC的比等于较长线段的比等于较长线段AC与原线段与原线段AB的的比,那么称线段比,那么称线段AB被点被点C黄金分割黄金分割.点点C叫作线段叫作线段AB的的黄金分割点,较长线段黄金分割点,较长线段AC与原线段与原线段AB的比叫作黄金分的比叫作黄金分割比割比.知知3 3讲讲知知3 3讲讲易错警示易错警示一一条条线线段段有有两两个个黄黄金金分分割割点点,在在实实际际问问题题中中应明确哪条是较长线段,哪条是较短线段应明确哪条是较长线段,哪条是较短线段.知知3 3练练例5知知3 3练练解题秘方:解题秘方:紧扣黄金分割的定义紧扣黄金分割的定义,写出线段之间数量关系,写出线段之间数量关系的几种形式,进行逐一判断的几种形式,进行逐一判断.答案:答案:C知知3 3练练方法点拨方法点拨本本题题考考查查了了黄黄金金分分割割的的定定义义:一一个个点点把把一一条条线线段段分分成成较较长长线线段段和和较较短短线线段段,并并且且较较长长线线段段是是较较短短线线段段和和整整条条线线段段的的比比例例中中项项,那那么么就就说说这这个个点点把把这这条条线线段段黄黄金金分分割割,这这个点叫这条线段的黄金分割点个点叫这条线段的黄金分割点知知3 3练练如图如图3.1-1,已知点,已知点C是线段是线段AB的黄金分割点,且的黄金分割点,且BCAC.若若S1表示以表示以BC为边的正方形的面积,为边的正方形的面积,S2表示表示长为长为AB、宽为、宽为AC的矩形的面积,的矩形的面积,则则S1与与S2的大小关系为的大小关系为()A.S1S2 B.S1S2 C.S1S2 D.不能确定不能确定例6知知3 3练练解题秘方:解题秘方:紧扣黄金分割的定义,比较两个图形的面积紧扣黄金分割的定义,比较两个图形的面积大小大小.答案:答案:B解:解:根据黄金分割的定义得到根据黄金分割的定义得到BC2ACAB.S1表示以表示以BC为边的正方形的面积,为边的正方形的面积,S2表示长为表示长为AB、宽为、宽为AC的矩形的矩形的面积,的面积,S1BC2,S2ACAB,S1S2.故选故选B知知3 3练练比例线段比例线段比例线段比例线段成比例线段成比例线段特例特例黄金分割黄金分割变形变形比例的比例的基本性质基本性质。












