好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

电感、变压器的高频特性与损耗、.doc

16页
  • 卖家[上传人]:宝路
  • 文档编号:17656841
  • 上传时间:2017-11-11
  • 文档格式:DOC
  • 文档大小:366.24KB
  • / 16 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 绕组高频效应及其对损耗的影响1. 集肤效应1.1 集肤效应的原理图 1.1 表示了集肤效应的产生过程图中给出的是载流导体纵向的剖面图,当导体流过电流(如图中箭头方向)时,由右手螺旋法则可知,产生的感应磁动势为逆时针方向,产生进入和离开剖面的磁力线如果导体中的电流增加,则由于电磁感应效应,导体中产生如图所示方向的涡流由图可知:涡流的方向加大了导体表面的电流,抵消了中心线电流,这样作用的结果是电流向导体表面聚集,故称为集肤效应在此引进一个集肤深度〈skin depth〉的概念,此深度的电流密度大小恰好为表面电流密度大小的 1/e 倍: 一般用集肤深度 Δ 来表示集肤效应,其表达式为:(1.1)其中:γ 为导体的电导率,μ 为导体的磁导率,f 为工作频率图 1.1.集肤效应产生过程示意图图 1.2.高频导体电路密度分布图高频时的导体电流密度分布情形,大致如图 1.2 所示,由表面向中心处的电流密度逐渐减小由上图及式 1.1 可知,当频率愈高时,临界深度将会愈小,结果造成等效阻值上升因此在高频时,电阻大小随着频率而变的情形,就必须加以考虑进去1.2 影 响 及 应 用在 高 频 电 路 中 可 以 采 用 空 心 导 线 代 替 实 心 导 线 。

      此 外 , 为 了 削 弱 趋 肤 效 应 , 在 高 频电 路 中 也 往 往 使 用 多 股 相 互 绝 缘 细 导 线 编 织 成 束 来 代 替 同 样 截 面 积 的 粗 导 线 , 这 种 多 股线 束 称 为 辫 线 在 工 业 应 用 方 面 , 利 用 趋 肤 效 应 可 以 对 金 属 进 行 表 面 淬 火 考 虑 到 交 流 电 的 集 肤 效 应 , 为 了 有 效 地 利 用 导 体 材 料 和 便 于 散 热 , 发 电 厂 的 大 电 流母 线 常 做 成 槽 形 或 菱 形 母 线 ; 另 外 , 在 高 压 输 配 电 线 路 中 , 利 用 钢 芯 铝 绞 线 代 替 铝 绞 线 ,这 样 既 节 省 了 铝 导 线 , 又 增 加 了 导 线 的 机 械 强 度 , 这 些 都 是 利 用 了 集 肤 效 应 这 个 原 理 集 肤 效 应 是 在 讯 号 线 里 最 基 本 的 失 真 作 用 过 程 之 一 , 也 有 可 能 是 最 容 意 被 忽 略 误 解的 与 一 般 讯 号 线 的 夸 大 宣 传 所 言 ,集 肤 效 应 并 不 会 改 变 所 有 的 高 频 讯 号 ,并 且 不 会 造成 任 何 相 关 动 能 的 损 失 。

      正 好 相 反 , 集 肤 效 应 会 因 传 导 体 的 不 同 成 分 , 在 传 递 高 频 讯 号时 有 不 连 贯 的 现 象 同 样 地 , 在 陈 旧 的 线 束 传 导 体 上 , 集 肤 效 应 助 长 讯 号 电 流 在 多 条 线束 上 的 交 互 跳 动 , 对 于 声 音 造 成 刺 耳 的 记 号 2 邻近效应图 2.1 表示了邻近效应的产生过程A 、B 两导体流过相同方向的电流 IA 和 IB,当电流按图中箭头方向突增时,导体 A 产生的突变磁通 ΦA-B 在导体 B 中产生涡流,使其下表面的电流增大,上表面的电流减少同样导体 B 产生的突变磁通 ΦB-A 在导体 A 中产生涡流,使其上表面的电流增大,下表面的电流减少这个现象就是导体之间的邻近效应当流过导体的电流相同,导体之间的距离一定时,如果导体之间的相对面积不同,邻近效应使得导体有效截面面积不同研究表明:导体的相对面积越大则导体有效截面越大,损耗相对较小图 2.1.临近效应产生过程示意图图 2.2.临近效应示意图图 2.3. 一轴对称模型在频率为 20KHz 时电流密度的分布图临近效应与集肤效应是共存的。

      集肤效应是电流主要集中在导体表面附近,但是沿着导体圆周的电流分布还是均匀的如果另一根载有反向交流电流的圆柱导体与其相邻,其结果使电流不再对称地分布在导体中,而是比较集中在两导体相对的内侧,形成这种分布的原因可以从电磁场的观点来理解电源能量主要通过两线之间的空间以电磁波的形式传送给负载,导线内部的电流密度分布与空间的电磁波分布密切相关,两线相对内侧处电磁波能量密度大,传入导线的功率大,故电流密度也较大如果两导线载有相同方向的交变电流,则情况相反,在两线相对外侧处的电流密度大3.导体的边缘效应Dowall 提出了计算两绕组变压器绕组交流电阻的方法,此方法先将圆导体转化为方形,并作如下假设:①磁场被假定为一维变量,垂直于导体的分量被忽略,并且总磁场强度在每个导体层中为常量;②绕组被假定为无限长片状导体的一部分,电流密度沿每层导体截面是常数,导体边缘效应被忽略;③假定磁芯不存在,线圈在整个磁芯宽度方向上均匀分布;④流过绕组的电压和电流均为正弦波,且线圈无开路后来的研究者们对此方法提出了一些修正事实上,导体的边缘效应对磁性元件的损耗和漏感等有较大的影响绕组的边缘效应会造成由上述假定所限定的一维绕组损耗计算方法所不能计算的额外损耗。

      在不同的工作频率下,绕组之间距离不同,造成的交流电阻和漏感不同,对于一个指定的频率,存在一个最佳的距离使得绕组交流电阻最小;绕组在磁芯窗口中的位置对绕组参数也有一定的影响;对于高频变压器,原副边绕组的宽度与绕组损耗和能量的存储也有很大关系:原副边绕组宽度相同时高频变压器可以获得最小的交流电阻和漏感有关学者对这种边缘效应进行了详细的研究,使用二维有限元仿真软件,通过对磁场分布和电流分布进行分析证明了绕组边缘效应对绕组损耗和漏感的影响因为有限元分析方法对每个设计方案都要单独求解,因此不能提供一般的结论,Soft Switching Technologies Corporation 的 Nasser H.Kutkut 对传统的一维绕组损耗计算方法进行了改进,通过在 Dowell 方法分析结果上添加一些修正因数,则可以将二维的边缘效应考虑进去使用二维有限元的方法分析绕组的边缘效应损耗,通过研究几何因素如绕组间距、位置等对磁场分布和电流分布的影响,进而得出几何因素对绕组损耗的影响,得出了一系列的绕组优化原则在大电流时,铜带的使用是比较常见的,但是铜带使用时会出现较明显的绕组边缘效应,电流变成了不均匀分布的形式,可以想象二维场效应是比较严重的。

      在分析铜带绕组的二维边缘效应之前,先做一定的假设:①假定电流集中在一个趋肤深度内当铜带导体的厚度是当前工作频率对应的趋肤深度的若干倍时,这一点是成立的②假定电流密度沿着铜带导体表面是 Js,则铜带厚度方向上电流密度的分布满足式(3.1):(3.1)n 表示铜带从表面深入到内部的深度,k 为结构系数在高频的情况下,趋肤深度非常小,导体表面的磁场接近线性磁场,这种情况下,导体表面的电流分布类似于在标量电势作用下的导体表面的静电荷分布,方形铜带问题的分析就可以简化为与之等截面积的椭圆状铜带导体的分析,方形铜带导体和椭圆形铜带导体的截面关系如图 3.1 所示图 3.1.铜带的椭圆近似模型分析使用这种假设条件,则可以得到沿着铜带的电流密度分布为式(3.2)所示:(3.2)由式(3.2)可以看出,当 x=b 或者 x=-b 时电流密度 Js 最大即铜带在导体的边缘处达到最大值,从磁场分布的角度来看,在铜带导体的边缘处由于边缘效应,磁场垂直于导体的分量会很大,这样就导致了这个磁场分量对铜带导体的切割,铜带绕组的涡流损耗会增大,同时导体边缘处的强磁场会导致电流密度的显著增大电流分布是在边缘处很强,中间较为平均,由于边缘处受强磁场的吸引,显示高的电流密度,这种电流密度在端部的重新分布增加了导体的交流电阻,其结果比一维分析的要大很多。

      通过优化铜带边缘的场分布,可以减小边缘处的磁场垂直分量,这样可以改善铜带导体电流密度的分布,减小绕组高频损耗具体方法是在铜带边缘处使用高磁导率磁芯,减小磁路磁阻,这样就会降低了铜带端部的磁场,减小了端部的电流分布,绕组损耗将会降低,但是需要特殊的磁芯工艺4.绕组涡流损耗对于高频变压器,因为存在原边和副边绕组,所以可以通过绕组交错布置的方式小绕组的漏感和涡流损耗在绕组交错布置时,因为原、副边绕组的磁势是相反的,此会存在一个去磁效应,磁芯窗口中的磁势会有一定的减小,漏磁场和高频时漏磁场成的导体涡流损耗也会比较小对于高频电感而言,它只有一个绕组,磁路中的气隙磁势和绕组的磁势平衡,在窗口中没有其它绕组的磁势可以和电感绕组的磁势相平衡产生去磁效应,因此电感磁芯窗口中的磁势较大,磁场较强通过分析可以发现,电感中的磁通主要分为以下几个部分:①主磁路磁通这部分磁通是流通在电感磁芯中的磁通,它不会在磁芯窗口中出现,因此它不会切割导体,也不会产生导体损耗②气隙边缘磁通,即扩散磁通这部分磁通是由于气隙磁势而产生,它在磁芯窗口中出现,在高频时会切割窗口中的导体造成涡流损耗③旁路磁通这部分磁通不是由于气隙磁势而产生,而是由于相邻磁芯柱之间的磁势差而产生,当气隙较小时,旁路磁通在窗口磁通中占较大比例。

      图 4.1. 磁通分布图4.1 旁路磁通损耗旁路磁通通过磁芯窗口跨过相邻的磁芯柱,在绕组上产生大量的涡流和损耗,气隙的边缘磁通是由于跨过气隙的磁势造成的,而旁路磁通是由于相邻磁芯柱间的磁势差异造成,沿着磁芯柱窗口的磁势分布取决于载流绕组和气隙的位置沿着磁芯柱磁势随着载流绕组安匝增大而增加,随着跨过气隙而降低通过做出如下一维假设,可以对旁路磁通作一定的分析1.假定磁芯磁导率是无穷的,磁场进入磁芯窗口是垂直于磁芯表面的2.绕组添满整个磁芯窗口宽度,绕组边缘效应很小,可忽略3.对圆导体进行一维等效,变成一片方导体,使用等效厚度和等效电导率,磁场在磁芯窗口中平行于导体表面,属一维分布4.气隙可认为很小,边缘磁通很小,对旁路磁通影响很小,然而无论气隙多么小,边缘磁通都存在,因为气隙磁势是存在的图 4.1.1 Dowell 绕组损耗分析模型如图 4.1.1 所示为磁芯窗口中的第 m 层铜带绕组,其上、下表面的磁场强度分别 Hm1 和Hm2,则这层铜带绕组的电流分布和绕组损耗可以通过 Dowell 方程得出,如式(4.1.1)所示:(4.1.1)(4.1.2)式中 k= ,f 是工作频率,σeq 是铜带的等效电导率,μ 是绕组的磁导率,Aeq 和 W 是等效铜带的厚度和宽度。

      总的旁路磁通绕组损耗可以通过求和得出,如式(2.1.3)所示:(4.1.3)通过用一维的方式分析旁路磁通可知:绕组的电流密度与沿导体的磁场强度密切相关,不同的气隙位置导致不同的窗口磁势,因此沿导体的磁场强度会有较大的不同,沿导体的电流密度分布也会有较大的不同旁路磁通的大小是与磁芯高度方向上的平均磁压降密切相关的当气隙处于中间与两端时,磁压分布如下图所示: 图 4.1.2 EI 型(a)和 EE(b)型磁芯电感窗口磁势分布图 a 中的平均磁压降为 IN/2,b 为 IN/4 假定旁路磁通与底边平行,又由于 B=dU*u0/w,可知,a 中的磁密必定大于 b 中的磁密,磁场方向与线圈垂直 下面是损耗与平均磁压降的关系: 图 4.1.3 损耗随平均磁压降变化图由图可看出磁压降越低,损耗越低 由此,如果我们可以将磁压降降得更低,就可得到损耗更低的电感! 图 4.1.4 磁压降与气隙位置的关系由于它将气隙交错布置,使磁压降在高度方向上出现二次转折,仅为 IN/8它的损耗比起气隙居中者可再下降约 50% 因此我们可以知道在电感磁势一定的情况下,EE 磁芯窗口中的最大磁势是 EI 磁芯的一半。

      磁芯窗口中的最大磁势的减小,有助于减小旁路磁通,进而旁路磁通造成的导体涡流损耗也会减小,所以在选择磁芯时应该引起注意,利用交错气隙可以减少磁芯窗口内的旁路磁通4.2 扩散磁通损耗滤波电感工作时。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.