
高考综合复习——机械振动_机械波专题复习-22页.pdf
22页1 机械振动机械波专题复习考纲解读本专题考查的热点有简谐运动的特点及图象、波的图象以及波长、波速、频率的关系,题型以选择题和填空题为主,难度中等偏下,有的考区也以计算题的形式考查复习时应注意理解振动过程中回复力、位移、速度、加速度等各物理量的变化规律、振动与波动的关系及两个图象的物理意义,注意图象在空间和时间上的周期性第一部分机械振动知识要点梳理知识点一简谐运动知识梳理1定义物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动表达式为: F= kx ,是判断一个振动是不是简谐运动的充分必要条件凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动1)简谐运动的位移必须是指偏离平衡位置的位移也就是说,在研究简谐运动时所说的位移的起点都必须在平衡位置处2)回复力是一种效果力,是振动物体在沿振动方向上所受的合力3)“平衡位置”不等于“平衡状态”平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态。
特别提醒: 简谐运动的位移大小和方向都是相对平衡位置来说的,是从平衡位置指向所在位置的矢量2几个重要的物理量间的关系要熟练掌握做简谐运动的物体在某一时刻(或某一位置)的位移x、回复力F、加速度 a、速度 v 这四个矢量的相互关系1)由定义知: Fx,方向与位移方向相反2)由牛顿第二定律知:aF,方向与F 方向相同3)由以上两条可知:ax,方向与位移方向相反4)v 和 x、F、a 之间的关系最复杂:当v、a 同向(即v、 F 同向,也就是v、x 反向)时 v 一定增大;当 v、a 反向(即v、 F 反向,也就是v、x 同向)时, v 一定减小3从总体上描述简谐运动的物理量振动的最大特点是往复性或者说是周期性因此振动物体在空间的运动有一定的范围,用振幅 A 来描述;在时间上则用周期T 来描述完成一次全振动所需的时间1)振幅 A 是描述振动强弱的物理量一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是不变的而位移是时刻在改变的)(2)周期 T 是描述振动快慢的物理量周期由振动系统本身的因素决定,叫固有周期任何简谐运动都2 有共同的周期公式:(其中 m 是振动物体的质量,k 是回复力系数,即简谐运动的判定式F= kx 中的比例系数,对于弹簧振子k 就是弹簧的劲度,对其它简谐运动它就不再是弹簧的劲度了)。
3)频率也是描述振动快慢的物理量周期与频率的关系是4表达式,其中 A 是振幅,是 t=0时的相位,即初相位或初相5简谐运动的能量特征振动过程是一个动能和势能不断转化的过程,振动物体总的机械能的大小与振幅有关,振幅越大,振动的能量越大简谐运动的振幅不变,总的机械能守恒疑难导析1、简谐运动中路程和时间的关系(1)若质点运动时间t 与周期 T 的关系满足t=nT ( n1,2,3),则成立特别提醒: 不论计时起点对应质点在哪个位置向哪个方向运动,经历一个周期就完成一次全振动,完成任何一次全振动质点通过的路程都等于4A 2)若质点运动时间t 与周期 T 的关系满足( n1,2,3),则成立(3)若质点运动时间t 与周期 T 的关系满足,此种情况最复杂,分三种情形计时起点对应质点在三个特殊位置(两个最大位移处,一个平衡位置),由简谐运动的周期性和对称性知,成立计时起点对应质点在最大位移和平衡位置之间,向平衡位置运动,则s A计时起点对应质点在最大位移处和平衡位置之间,向最大位移处运动,则sA4)质点运动时间t 为非特殊值,则需要利用简谐运动的振动图象进行计算2、简谐运动的位移、速度、加速度及对称性(1)位移:方向为从平衡位置指向振子位置,大小为平衡位置到该位置的距离。
位移的表示方法:以平衡位置为原点,以振动所在的直线为坐标轴,规定正方向,则某一时刻振子(偏离平衡位置)的位移用该时刻振子所在位置的坐标来表示振子通过平衡位置时,位移改变方向2)速度:描述振子在振动过程中经过某一位置或在某一时刻运动的快慢在所建立的坐标轴上,速度的正负号表示振子运动方向与坐标轴的正方向相同或相反振子在最大位移处速度为零,在平衡位置时速度最大,振子在最大位移处速度方向发生改变3)加速度:根据牛顿第二定律,做简谐运动物体的加速度由此可知,加速度的大小跟位移大小成正比,其方向与位移方向总是相反振子在位移最大处加速度最大,通过平衡位置时加速度为零,此时加速度改变方向4)简谐运动的对称性瞬时量的对称性:做简谐运动的物体,在关于平衡位置对称的两点,回复力、位移、加速度具有等大反向的关系另外速度、动量的大小具有对称性,方向可能相同或相反3 过程量的对称性:振动质点来回通过相同的两点间的时间相等,如;质点经过关于平衡位置对称的等长的两线段时时间相等,如,如图所示:特别提醒:利用简谐运动的对称性,可以解决物体的受力问题,如放在竖直弹簧上做简谐运动的物体,若已知物体在最高点的合力或加速度,可求物体在最低点的合力或加速度。
但要注意最高点和最低点合力或加速度的方向相反由于简谐运动有周期性,因此涉及简谐运动时,往往出现多解,分析时应特别注意:物体在某一位置时,位移是确定的,而速度不确定;时间也存在周期性关系例: 一个弹簧振子的振动周期是0.025s ,当振子从平衡位置开始向右运动,经过0.17s 时,振子的运动情况是()A正在向右做减速运动B正在向右做加速运动C正在向左做减速运动D正在向左做加速运动答案: B 知识点二简谐运动的图象知识梳理1简谐运动的图象以横轴表示时间t,以纵轴表示位移x,建立坐标系,画出的简谐运动的位移时间图象都是正弦或余弦曲线2简谐运动的图象(1)从平衡位置开始计时,函数表达式为,图象如图12)从最大位移处开始计时,函数表达式,图象如图23振动图象的物理意义表示振动物体的位移随时间变化的规律4从图象中可以知道(1)任一个时刻质点的位移(2)振幅 A (3)周期 T (4)速度方向:由图线随时间的延伸就可以直接看出(5)加速度:加速度与位移的大小成正比,而方向总与位移方向相反只要从振动图象中认清位移(大小和方向)随时间变化的规律,加速度随时间变化的情况就迎刃而解了疑难导析1关于振动图象的讨论(1)简谐运动的图象不是振动质点的轨迹。
做简谐运动质点的轨迹是质点往复运动的那一段线段(如弹4 簧振子)或那一段圆弧(如单摆)这种往复运动的位移图象,就是以x 轴上纵坐标的数值表示质点对平衡位置的位移,以t 轴横坐标数值表示各个时刻,这样在x t 坐标系内,可以找到各个时刻对应质点位移坐标的点,即位移随时间分布的情况振动图象2)简谐运动的周期性体现在振动图象上是曲线的重复性简谐运动是一种复杂的非匀变速运动,但运动的特点具有简单的周期性、重复性、对称性所以用图象研究要比用方程要直观、简便简谐运动的图象随时间的增加将逐渐延伸,过去时刻的图形将永远不变,任一时刻图线上过该点切线的斜率数值代表该时刻振子的速度大小,正负表示速度的方向,斜率为正时表示速度沿x 正向,斜率为负时表示速度沿x 负向2根据简谐运动图象分析简谐运动情况的基本方法简谐运动图象能够反映简谐运动的运动规律,因此将简谐运动图象跟具体的运动过程联系起来是讨论简谐运动的一种方法1)从简谐运动图象上可以直接读出不同时刻t 的位移值,从而知道位移x 随时间 t 的变化情况2)在简谐运动图象中,用作曲线上某点切线的方法可确定各时刻质点的速度大小和方向切线与x 轴正方向夹角小于时,速度方向与选定的正方向相同,且夹角越大表明此时速度越大;当切线与x 轴正方向的夹角大于时,速度方向与选定的正方向相反,且夹角越大表明此时速度越小。
也可以根据位移情况来判断速度的大小,因为质点离平衡位置越近,质点速度越大,而最大位移处,质点速度为零根据位移变化趋势判定速度方向,若正位移增大,速度为正方向,若正位移减小,速度为负方向;反之,若负位移增大,速度为负方向,若负位移减小,速度为正方向3)由于,故可以根据图象上各个时刻的位移变化情况确定质点加速度的变化情况同样只要知道了位移和速度的变化情况,也就不难判断出质点在不同时刻的动能和势能的变化情况例: 一质点做简谐振动,其位移x 与时间 t 的关系曲线如图所示,由可知()A质点振动频率是4Hz Bt 2s 时,质点的加速度最大C质点的振幅为2cm Dt 3s 时,质点所受合外力最大答案: BC 解析: 由图可知,振动周期为T4s,因而振动倾率f=0.25Hz ,所以选项A错误图中t 0 点是振动平衡位置,质点在平衡位置时所受合外力为零,速度最大,加速度为零;质点在最大位移处所受合外力最大,加速度最大,速度为零,因而选项B正确,选项D错误振幅是质点偏离平衡位置的最大位移,由图可见,质点偏离平衡位置的最大位移为2cm,振幅为2cm ,因而选项C正确知识点三典型的简谐运动知识梳理1弹簧振子5 (1)周期,与振幅无关,只由振子质量和弹簧的劲度系数决定。
2)可以证明,竖直放置的弹簧振子的振动也是简谐运动,周期公式也是这个结论可以直接使用在水平方向上振动的弹簧振子的回复力是弹簧的弹力;在竖直方向上振动的弹簧振子的回复力是弹簧弹力和重力的合力2单摆(1)在一条不可伸长的、质量可以忽略的细线下拴一质点,上端固定,构成的装置叫单摆;当单摆的最大偏角小于时,单摆的振动近似为简谐运动2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力,偏角越大回复力越大,加速度()越大,由于摆球的轨迹是圆弧,所以除最高点外,摆球的回复力并不等于合外力3)单摆的周期:在小振幅摆动时,单摆的振动周期跟振幅和振子的质量都没有关系疑难导析类单摆的等效摆长和等效重力加速度在有些振动系统中不一定是绳长, g 也不一定为9.8, 因此出现了等效摆长和等效重力加速度的问题1)等效摆长: 如图所示, 三根等长的绳共同系住一密度均匀的小球m ,球直径为 d 与天花板的夹角若摆球在纸面内做小角度的左右摆动,则摆动圆弧的圆心在处,故等效摆长,周期;若摆球做垂直纸面的小角度摆动,则摆动圆弧的圆心在O 处,故等效摆长为,周期2)等效重力加速度:公式中的g 由单摆所在的空间位置决定由知, g 随地球表面不同位置、不同高度而变化,在不同星球上也不相同,因此应求出单摆所在处的等效值代入公式,即g 不一定等于9.8。
g 还由单摆系统的运动状态决定如单摆处在向上加速发射的航天飞机内,设加速度为a,此时摆球处于超重状态,沿圆弧切线方向的回复力变大,摆球质量不变,则重力加速度的等效值再如,单6 摆若在轨道上运行的航天飞机内,摆球完全失重,回复力为零,则等效值,所以周期为无穷大,即单摆不摆动了g 还由单摆所处的物理环境决定如带电小球做成的单摆在竖直方向的匀强电场中,回复力应是重力和竖直电场力的合力在圆弧切线方向的分力,所以也有等效值的问题在均匀场中值等于摆球静止在平衡位置时摆线的张力与摆球质量的比值,由此找到等效重力加速度代入公式即可求得周期T若g,T 变短;g,T 变长例: 在一加速系统中有一摆长为的单摆1)当加速系统以加速度a 竖直向上做匀加速运动时,单摆的周期多大?若竖直向下加速呢?(2)当加速系统在水平方向以加速度a 做匀加速直线运动时,单摆的周期多大?解析:(1)当单摆随加速系统向上加速时,设在平衡位置相对静止的摆球的视重力为F,如图甲所示,则,故,由得,视重力加速度,所以单摆周期同理,当升降机竖直向下加速时,视重力,则,故(2)当在水平方向加速时,相对系统静止时摆球的位置如图乙所示,视重力,故视重力加速度,所以周期。
知识点四受迫振动与共振知识梳理1受迫振动物体在周期性变化的驱动力作用下的振动叫受迫振动;物体做受迫振动时,振动稳定后的频率等于驱动力的频率,跟物。












