好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

教学设计教案函数奇偶性.doc

6页
  • 卖家[上传人]:新**
  • 文档编号:431903276
  • 上传时间:2024-01-29
  • 文档格式:DOC
  • 文档大小:74.50KB
  • / 6 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 教学设计(教案)模板基本信息学 科数学年 级高一教学形式讲授教 师骆秋良单 位湛江市坡头区第一中学课题名称函数的奇偶性学情分析分析要点:1.教师主观分析、师生访谈、学生作业或试题分析反馈、问卷调查等;2.学生认知发展分析:主要分析学生现在的认知基础(包括知识基础和能力基础),要形成本节内容应该要走的认知发展线;3.学生认知障碍点:学生形成本节课知识时最主要的障碍点这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数,(k≠0),二次函数y=ax2,(a≠0),故可在此基础上,引入奇、偶函数的概念,以便于学生理解.在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔.对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈R.在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数.关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果.教学目标分析要点:1.知识目标;2.能力目标;3.情感态度与价值观。

      通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力.教学过程一、探究导入1. 观察如下两图,思考并讨论以下问题:(1)这两个函数图像有什么共同特征?(2)相应的两个函数值对应表是如何体现这些特征的?可以看到两个函数的图像都关于y轴对称.从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同.对于函数f(x)=x2,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事实上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x).此时,称函数y=x2为偶函数.2. 观察函数f(x)=x和f(x)=的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征.可以看到两个函数的图像都关于原点对称.函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x).此时,称函数y=f(x)为奇函数.二、师生互动由上面的分析讨论引导学生建立奇函数、偶函数的定义1. 奇、偶函数的定义如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作奇函数.如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数.2. 提出问题,组织学生讨论(1)如果定义在R上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗?(f(x)不一定是偶函数)(2)奇、偶函数的图像有什么特征?(奇、偶函数的图像分别关于原点、y轴对称)(3)奇、偶函数的定义域有什么特征?(奇、偶函数的定义域关于原点对称)三、难点突破例题讲解1. 判断下列函数的奇偶性.注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1].2. 已知:定义在R上的函数f(x)是奇函数,当x>0时,f(x)=x(1+x),求f(x)的表达式.解:(1)任取x<0,则-x>0,∴f(-x)=-x(1-x),而f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=x(1-x).(2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.3. 已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)上是增函数,还是减函数,并证明你的结论.解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x)在(0,+∞)上是增函数,证明如下:任取x1>x2>0,则-x1<-x2<0.∵f(x)在(-∞,0)上是减函数,∴f(-x1)>f(-x2).又f(x)是偶函数,∴f(x1)>f(x2).∴f(x)在(0,+∞)上是增函数.思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?巩固创新1. 已知:函数f(x)是奇函数,在[a,b]上是增函数(b>a>0),问f(x)在[-b,-a]上的单调性如何.2. f(x)=-x|x|的大致图像可能是(  )3. 函数f(x)=ax2+bx+c,(a,b,c∈R),当a,b,c满足什么条件时,(1)函数f(x)是偶函数.(2)函数f(x)是奇函数.4. 设f(x),g(x)分别是R上的奇函数和偶函数,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.板书设计对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x).此时,称函数y=x2为偶函数.例题讲解 多媒体作业或预习课后拓展1. 有既是奇函数,又是偶函数的函数吗?若有,有多少个?2. 设f(x),g(x)分别是R上的奇函数,偶函数,试研究:(1)F(x)=f(x)·g(x)的奇偶性.(2)G(x)=|f(x)|+g(x)的奇偶性.3. 已知a∈R,f(x)=a-,试确定a的值,使f(x)是奇函数.4. 一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式?自我评价这篇案例设计由浅入深,由具体的函数图像及对应值表,抽象概括出了奇、偶函数的定义,符合职高学生的认知规律,有利于学生理解和掌握.应用深化的设计层层递进,深化了学生对奇、偶函数概念的理解和应用.拓展延伸为学生思维能力、创新能力的培养提供了平台.组长评议或同行评议(可选多人):重点突出,难点突破 评议一单位: 姓名: 日期:。

      点击阅读更多内容
      相关文档
      2025国开山东开大《土质学与土力学》形成性考核123答案+终结性考核答案.docx 中学综合素质知识点梳理【中学教师资格证】.docx 2025国开山东开大《特许经营概论》形成性考核123答案+终结性考核答案.doc 2025年高考英语全国一卷真题(含答案).docx 2025国开山东《农民专业合作社创建与管理》形成性考核123答案+终结性考核答案.docx 2025国开山东开大《自然现象探秘》形成性考核123答案+终结性考核答案.docx 2025国开山东《消费心理学》形成性考核123答案+终结性考核答案.doc 2025国开山东《小微企业管理》形成性考核123答案+终结性考核答案.doc 2025国开山东开大《资本经营》形成性考核123答案+终结性考试答案.docx 2025国开山东《小学生心理健康教育》形考123答案+终结性考试答案.docx 2025国开《视频策划与制作》形考任务1-4答案.docx 2025国开《亲子关系与亲子沟通》形考任务234答案+期末大作业答案.docx 2025国开电大《煤矿地质》形成性考核123答案.docx 2025国开电大《冶金原理》形考任务1234答案.docx 2025国开《在线学习项目运营与管理》形考任务1234答案.doc 2025国开电大《在线教育的理论与实践》阶段测验1-4答案.docx 2024 年注册环保工程师《专业基础考试》真题及答案解析【完整版】.docx 环保工程师---2023 年注册环保工程师《专业基础考试》真题及答案解析【完整版】.docx 2025国开《液压与气压传动》形考任务一参考答案.docx 2025年春江苏开放大学教育研究方法060616计分:形成性作业2、3答案.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.