
时间序列季节性分析spss.docx
10页表1为某公司连续144个月的月度销售量记录,变量为sales试用专家模型、ARIMA模型 和季节性分解模型分析此数据表1某公司连续141个月月度销售记录数据日期sales日期■sales日期sales09/01/197811209/01/198219609/01/198631510/01/197811810/01/198219610/01/198630111/01/197813211/01/198223611/01/198635612/01/197812912/01/198223512/01/198634801/01/197912101/01/198322901/01/198735502/01/197913502/01/198324302/01/198742203/01/197914803/01/198326403/01/198746504/01/197914804/01/198327204/01/198746705/01/197913605/01/198323705/01/198740406/01/197911906/01/198321106/01/198734707/01/197910407/01/198318007/01/198730508/01/197911808/01/198320108/01/198733609/01/197911509/01/198320409/01/198734010/01/197912610/01/198318810/01/198731811/01/197914111/01/198323511/01/198736212/01/197913512/01/198322712/01/198734801/01/198012501/01/198423401/01/198836302/01/198014902/01/198426402/01/198843503/01/198017003/01/198430203/01/198849104/01/198017004/01/198429304/01/198850505/01/198015805/01/198425905/01/198840406/01/198013306/01/198422906/01/198835907/01/198011407/01/198420307/01/198831008/01/198014008/01/198422908/01/198833709/01/198014509/01/198424209/01/198836010/01/198015010/01/198423310/01/198834211/01/198017811/01/198426711/01/198840612/01/198016312/01/198426912/01/198839601/01/198117201/01/198527001/01/198942002/01/198117802/01/198531502/01/198947203/01/198119903/01/198536403/01/198954804/01/198119904/01/198534704/01/198955905/01/198118405/01/198531205/01/198946306/01/198116206/01/198527406/01/198940707/01/198114607/01/198523707/01/198936208/01/198116608/01/198527808/01/198940509/01/198117109/01/198528409/01/198941710/01/198118010/01/198527710/01/198939111/01/198119311/01/198531711/01/198941912/01/198118112/01/198531312/01/198946101/01/198218301/01/198631801/01/199047202/01/198221802/01/198637402/01/199053503/01/198223003/01/198641303/01/199062204/01/198224204/01/198640504/01/199060605/01/198220905/01/198635505/01/199050806/01/198219106/01/198630606/01/199046107/01/198217207/01/198627107/01/199039008/01/198219408/01/198630608/01/1990432选定样本期间为1978年9月至1990年5月。
按时间顺序分别设为1至141一、画出趋势图,粗略判断一下数据的变动特点具体操作为:依次单击菜单“Analyze—Forecasting—Sequence Chart” 打开 “Sequence Chart”对话框,在打开的对话框中将sales选入“Variables”列表框,时间变量date 选入“Time Axis Labels”单击“OK”按钮,则生成如图2所示的sales序列图 1 “Sequence Char t” 对话框7OT.-100.00-600.00-soD.aa-400.00-aoa.aa-200.0a-—12/s二 9 密 -QrnIHgEg I」二 SHgBT -o史豆主987 -Qa/sngBB -oysMgEB -as.n=i1Bm5 -070」二 984 -QyD=i:19B4 丄逻2H昭B3 丄二2二9尽 -am占e-0」31工0蛊 d迫S二思一 丄史2二9号 丄迪S二用u -02/0—X2Z達 -aQD-L-IgTRdate图2 sales序列从趋势图可以明显看出,时间序列的特点为:呈线性趋势、有季节性变动,但季节波动随着 趋势增加而加大二、模型的估计(一)、季节性分解模型根据时间序列特点,我们选择带线性趋势的季节性乘法模型作为预测模型。
1、定义日期具体操作为:依次单击菜单“Data—Define Date”打开“Define Date”对话框,在“Cases Are”列表框选择“Years, mon ths”的日期格式,在对话框的右侧定义数据的起始年份、月 份定义完毕后,单击“0K”按钮,在数据集中生成日期变量图 3 “Define Date” 对话框2、季节分解具体操作为: “Analyze — Forecasting—Seasonal Decomposition” 打开“ Seasonal Decomposition”对话框,将待分析的序列变量名选入“Variable”列表框在“Model Type”选择组中选择“Multiplicative” 模型;在“Moving Average Weight” 选择组图 4 “Seasonal Decomposition” 对话框3、画出序列图① 原始序列和校正了季节因子作用的序列图图5为sales序列和校正了季节因子作用的序列图绿线为原始序列,体现了销售量呈年度 周期震荡增长的特征蓝线为校正了的月度效应序列,在12年里呈稳步增长的态势□ataSeaBonaJ Bs,u5-led seres for 曹日也 from SEASON, MOD_3b 12siikis图5 sales序列和校正了季节因子作用的序列图② 季节因子图图6 为季节因子图,呈12个月周期的规则波动:可发现一年中,6-9月间公司的销售量较 大,其他时间相对较少,1〜2月份为销售淡季。
1 30000-l.2qaacr1.1CQ0CT1 OQOQO-a.^dooD-0.30000-—宅AV隍 g I?■F®」暑 —苗EP」銀8 —AFR1 舊 —Nov徒常 1」$ vgss —」>z■嘗 7 —疋AR ss —OCT 畐 5 1?< 亠 3B5 —Dec曰董 e IJUL」gm4atl IF®」gB4 D —APR1 善 —Nov 1882 1」£肚戏 —」ANI ・9B2 —AUGIg 巴 —OCTI 善 —£>-
1 osaoo-1.02500-1.












