好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

北师大版九年级数学上册前三章精选试题.doc

6页
  • 卖家[上传人]:lil****ar
  • 文档编号:271021085
  • 上传时间:2022-03-28
  • 文档格式:DOC
  • 文档大小:138.63KB
  • / 6 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 一.选择题(共15小题)1.将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心,则图中四块阴影面积的和为(  )A.2cm2 B.4cm2 C.6cm2 D.8cm2 2.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则的△AEF的面积是(  )A.4 B.3 C.2 D.5.如图,菱形OABC的顶点O在坐标系原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点O顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为(  )A.(﹣,) B.(,﹣) C.(2,﹣2) D.(,﹣)6.如果关于x的方程x2﹣2(1﹣k)x+k2=0有实数根α、β,则a+β的取值范围是(  )A.α+β≥1 B.α+β≤1 C.α+β≥ D.α+β≤7.在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,a、b是关于x的方程x2﹣7x+c+7=0的两根,那么AB边上的中线长是(  )A. B. C.5 D.28.设a,b是方程x2+x﹣2011=0的两个实数根,则a2+2a+b的值为(  )A.2009 B.2010 C.2011 D.20129.如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则b=(  )A. B. C. D.10.若△ABC的一边a为4,另两边b、c分别满足b2﹣5b+6=0,c2﹣5c+6=0,则△ABC的周长为(  )A.9 B.10 C.9或10 D.8或9或1011.若a•b≠1,且有2a2+5a+1=0,b2+5b+2=0,则2+的值为(  )A. B. C. D.13.如图,在△ABC中,CD⊥AB,且CD2=AD•DB,AE平分∠CAB交CD于F,∠EAB=∠B,CN=BE.①CF=BN;②∠ACB=90°;③FN∥AB;④AD2=DF•DC.则下列结论正确的是(  )A.①②④ B.②③④ C.①②③④ D.①③14.如图,在正方形ABCD中,点E、F分别是BC、DC边上的两点,且∠EAF=45°,AE、AF分别交BD于M、N.下列结论:①AB2=BN•DM;②AF平分∠DFE;③AM•AE=AN•AF;④.其中正确的结论是(  )A.①② B.①③ C.①②③ D.①②③④15.如图,正方形ABCD中,E是BC的中点,DF=3CF,下面得出六个结论中:①△ABE∽△AEF;②△ABE∽△ECF;③△ADF∽△ABE;④△AEF∽△ECF;⑤△AEF∽△ADF;⑥△ECF∽△ADF,其中正确的个数是(  )A.2个 B.3个 C.4个 D.5个二.解答题(共10小题)16.(1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC于点G,CH⊥BD于点H,试证明CH=EF+EG;(2)若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH⊥BD于点H,则EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想;(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连接CL,点E是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;(4)观察图1、图2、图3的特性,请你根据这一特性构造一个图形,使它仍然具有EF、EG、CH这样的线段的关系,并满足(1)或(2)的结论,写出相关题设的条件和结论. 17.如图①,在正方形ABCD中,E为CD上一动点,连接AE交对角线BD于点F,过点F作FG⊥AE交BC于点G.(1)求证:AF=FG;(2)如图②,连接EG,当BG=3,DE=2时,求EG的长.18.如图,已知菱形ABCD的边长为2,∠DAB=60°,E、F分别是AD、CD上的两个动点,且满足AE+CF=2.连接BD.(1)图中有几对三角三全等?试选取一对全等的三角形给予证明;(2)判断△BEF的形状,并说明理由.(3)当△BEF的面积取得最小值时,试判断此时EF与BD的位置关系. 19.如图,在矩形ABCD中,AB=6m,BC=8m,动点P以2m/s的速度从点A出发,沿AC向点C移动,同时动点Q为lm/s的速度从点C出发,沿CB向点B移动,设P、Q两点分别移动ts(0<t<5)后,P点到BC的距离为dm,四边形ABQP的面积为S㎡(1)求距离d关于时间t的函数关系式;(2)求面积S关于时间t的函数关系式;(3)在P、Q两点移动的过程中,四边形ABQP的面积能否是△CPQ面积的3倍?若能,求出此时点P的位置;若不能,请说明理由. 20.从甲、乙两题中选做一题,如果两题都做,只以甲题计分.甲题:若关于x的一元二次方程x2﹣2(2﹣k)x+k2+12=0有实数根α、β.(1)求实数k的取值范围;(2)设,求t的最小值.乙题:如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.当点O运动到何处时,四边形AECF是矩形?并证明你的结论. 21.如图(图1,图2),四边形ABCD是边长为4的正方形,点E段BC上,∠AEF=90°,且EF交正方形外角平分线CP于点F,交BC的延长线于点N,FN⊥BC.(1)若点E是BC的中点(如图1),AE与EF相等吗?(2)点E在BC间运动时(如图2),设BE=x,△ECF的面积为y.①求y与x的函数关系式;②当x取何值时,y有最大值,并求出这个最大值. 22.端午节期间,某食品店平均每天可卖出300只粽子,卖出1只粽子的利润是1元.经调查发现,零售单价每降0.1元,每天可多卖出100只粽子.为了使每天获取的利润更多,该店决定把零售单价下降m(0<m<1)元.(1)零售单价下降m元后,该店平均每天可卖出      只粽子,利润为      元.(2)在不考虑其他因素的条件下,当m定为多少时,才能使该店每天获取的利润是420元并且卖出的粽子更多? 23.阅读下列材料:求函数的最大值.解:将原函数转化成x的一元二次方程,得.∵x为实数,∴△==﹣y+4≥0,∴y≤4.因此,y的最大值为4.根据材料给你的启示,求函数的最小值.25.k取什么值时,方程组:有一个实数解并求出这时方程组的解. 一.选择题(共15小题)1.B 2.B 3.D 4.B 5.B 6.A 7.B 8.B 9.B 10.C 11.A 12.B 13.C 14.D 15.B  二.解答题(共10小题)16.    17.    18.    19.    20.    21.    22.300+100×(1-m)(300+100×) 23.    24.    25.    第6页(共6页)。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.