
河南省安阳市林州市2024-2025学年数学九年级第一学期开学学业水平测试模拟试题【含答案】.doc
18页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………河南省安阳市林州市2024-2025学年数学九年级第一学期开学学业水平测试模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列图象中,表示y是x的函数的是( )A. B. C. D.2、(4分)菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为( )A.8 B.20 C.8或20 D.103、(4分)某市5月份中连续8天的最高气温如下(单位:):32,30,34,36,36,33,37,38.这组数据的众数是( )A.34 B.37 C.36 D.354、(4分)如图,AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE,CF交于点D,则下列结论中不正确的是( )A.△ABE≌△ACF B.点D在∠BAC的平分线上C.△BDF≌△CDE D.D是BE的中点5、(4分)已知将直线y=x+1向下平移3个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是( )A.经过第一、二、四象限 B.与x轴交于(2,0)C.与直线y=2x+1平行 D.y随的增大而减小6、(4分)如图,△ABC和△DCE都是等边三角形,点B、C、E在同一条直线上,BC=1,CE=2,连接BD,则BD的长为( )A.3 B.2 C.2 D.7、(4分)平行四边形所具有的性质是( )A.对角线相等 B.邻边互相垂直C.两组对边分别相等 D.每条对角线平分一组对角8、(4分)如图,D,E是△ABC中AB,BC边上的点,且DE∥AC,∠ACB角平分线和它的外角的平分线分别交DE于点G和H.则下列结论错误的是( )A.若BG∥CH,则四边形BHCG为矩形B.若BE=CE时,四边形BHCG为矩形C.若HE=CE,则四边形BHCG为平行四边形D.若CH=3,CG=4,则CE=2.5二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)将直线y=2x﹣2向右平移1个单位长度后所得直线的解析式为y=_____.10、(4分)已知中,,角平分线BE、CF交于点O,则 ______ .11、(4分)在学校组织的科学素养竞赛中,八(3)班有25名同学参赛,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为90分,80分,70分,60分,现将该班的成绩绘制成扇形统计图如图所示,则此次竞赛中该班成绩在70分以上(含70分)的人数有_______人.12、(4分)如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=__________度. 13、(4分)已知直角三角形的两边长分别为3、1.则第三边长为________.三、解答题(本大题共5个小题,共48分)14、(12分)已知关于x的一元二次方程总有两个不相等的实数根.(1)求m的取值范围;(2)若此方程的两根均为正整数,求正整数m的值.15、(8分)计算:2×÷3﹣(﹣2.16、(8分)先观察下列等式,再回答问题:① =1+1=2;②=2+ =2 ;③=3+=3;…(1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用 n(n 为正整数)表示的等式,并用所学知识证明.17、(10分)如图,在Rt△ABC中,∠C=90°,∠B=54°,AD是△ABC的角平分线.求作AB的垂直平分线MN交AD于点E,连接BE;并证明DE=DB.(要求:尺规作图,保留作图痕迹,不写作法)18、(10分)如图,直线AB的函数解析式为y=-2x+8,与x轴交于点A,与y轴交于点B。
1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接E,若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)甲、乙两人进行射击测试,每人10次射击的平均成绩恰好都是9.5环,方差分别是S甲2=0.90平方环,S乙2=1.22平方环,在本次射击测试中,甲、乙两人中成绩较稳定的是__.20、(4分)已知点A(a,5)与点B(-3,b)关于y轴对称,则a-b= .21、(4分)分解因式b2(x﹣3)+b(x﹣3)=_____.22、(4分)如果直线 y=kx+3 与两坐标轴围成三角形的面积为 3,则 k 的值为_____.23、(4分)在菱形ABCD中,M是AD的中点,AB=4,N是对角线AC上一动点,△DMN 的周长最小是2+,则BD的长为___________.二、解答题(本大题共3个小题,共30分)24、(8分)甲乙两家商场以同样价格销售相同的商品,在同一促销期间两家商场都让利酬宾.甲商场所有商品都按原价的八折出售,乙商场只对一次购物中超过100元后的价格部分按原价的七折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原价为x元,让利后的购物金额为y元(1)分别就甲乙两家商场写出y与x的函数关系式.(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.25、(10分)计算:(1);(2)26、(12分)如图,BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=DC,求证:AD是∠EAC的平分线.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】函数就是在一个变化过程中有两个变量x,y,当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.注意“y有唯一的值与其对应”对图象的影响.【详解】解:根据函数的定义可知,每给定自变量x一个值都有唯一的函数值y相对应,所以A. B. D错误.故选C.本题考查了函数的概念,牢牢掌握函数的概念是解答本题的关键.2、B【解析】试题分析:解方程可得:y=2或y=5,当边长为2时,对角线为6就不成立;则边长为5,则周长为20.考点:(1)、菱形的性质;(2)、方程的解3、C【解析】根据众数的定义求解.【详解】∵36出现了2次,故众数为36,故选C.此题主要考查数据的众数,解题的关键是熟知众数的定义.4、D【解析】根据全等三角形的判定对各个选项进行分析,从而得到答案.做题时,要结合已知条件与三角形全等的判定方法逐个验证.【详解】∵AB=AC,BE⊥AC于E,CF⊥AB于F,∠A=∠A∴△ABE≌△ACF(AAS),正确;∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴DF=DE故点D在∠BAC的平分线上,正确;∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴△BDF≌△CDE(AAS),正确;D. 无法判定,错误;故选D.5、B【解析】利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【详解】将直线y=x+1向下平移3个单位长度后得到直线y=x+1-3=x-2,A、直线y=x-2经过第一、三、四象限,故本选项错误;B、直线y=x-2与x轴交于(2,0),故本选项正确;C、直线y=x-2与直线y=2x+1相交,故本选项错误;D、直线y=x-2,y随x的增大而增大,故本选项错误;故选:B.考查了一次函数图象与几何变换,正确把握变换规律是解题关键.6、D【解析】作DF⊥CE于F,构建两个直角三角形,运用勾股定理逐一解答即可.【详解】过D作DF⊥CE于F,根据等腰三角形的三线合一,得:CF=1,在直角三角形CDF中,根据勾股定理,得:DF2=CD2-CF2=22-12=3,在直角三角形BDF中,BF=BC+CF=1+1=2,根据勾股定理得:BD=,故选D.本题考查了等边三角形的性质,勾股定理等,正确添加辅助线、熟练应用相关的性质与定理是解题的关键.7、C【解析】根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等,即可得出答案.【详解】解:平行四边形的对角相等,对角线互相平分,两组对边平行且相等.故选:C.此题考查了平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等;熟记平行四边形的性质是关键.8、C【解析】由∠ACB角平分线和它的外角的平分线分别交DE于点G和H可得∠HCG=90°,∠ECG=∠ACG即可得HE=EC=EG,再根据A,B,C,D的条件,进行判断.【详解】解:∵∠ACB角平分线和它的外角的平分线分别交DE于点G和H,∴∠HCG=90°,∠ECG=∠ACG;∵DE∥AC.∴∠ACG=∠HGC=∠ECG.∴EC=EG;同理:HE=EC,∴HE=EC=EG=HG;若CH∥BG,∴∠HCG=∠BGC=90°,∴∠EGB=∠EBG,∴BE=EG,∴BE=EG=HE=EC,∴CHBG是平行四边形,且∠HCG=90°,∴CHBG是矩形;故A正确;若BE=CE,∴BE=CE=HE=EG,∴CHBG是平行四边形,且∠HCG=90°,∴CHBG是矩形,故B正确;若HE=EC,则不可以证明四边形BHCG为平行四边形,故C错误;若CH=3,CG=4,根据勾股定理可得HG=5,∴CE=2.5,故D正确.故选C.本题考查了矩形的判定,平行四边形的性质和判定,关键是灵活这些判定解决问题.二、填空题(本大题共5个小题,每小题4分,共20分)9、2x﹣4【解析】试题解析:从原直线上找一点(1,0),向右平移一个单位长度为(2,0),它在新直线上,可设新直线的解析式为:,代入得 故所得直线的解析式为: 故答案为:10、【解析】解:∵∠A=90°,∴∠ABC+∠ACB=90°,∵角平分线BE、CF交于点O,∴∠OBC+∠OCB=45°,∴∠BOC=180°﹣45°=135°.故答案为:135°.点睛:本题考查了角平分线的定义、三角形的内角和定理:三角形的内角和等于180°.11、21【解析】首先根据统计图,求出此次竞赛中该班成绩在70分以上(含70分)的人数所占比例,然后已知总数,即可得解.【详解】根据统计图的信息,得此次竞赛中该班成绩在70分以上(含70分)的人数所占比例为此次竞赛中该班成绩在70分以上(含70分)的人数为故答案为21.此题主要考查扇形统计图的相关知识,熟练掌握,即可解题.12、22.5°【解析】四边形ABCD是矩形,AC=BD,OA=OC,OB=OD,OA=OB═OC,∠OAD=∠ODA,∠OAB=∠OBA,∠AOE=∠OAD+∠ODA=2∠OAD,∠EAC=2∠CAD,∠EAO=∠AOE,。












