好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2022年2021年立体几何—建系讲义.docx

18页
  • 卖家[上传人]:高****
  • 文档编号:233821479
  • 上传时间:2022-01-02
  • 文档格式:DOCX
  • 文档大小:215.26KB
  • / 18 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 精品word学习资料 可编辑资料 - - - - - - - - - - - - - - - --立 体 几 何 ( 向 量 法 ) — 建 系引入空间向量坐标运算, 使解立体几何问题防止了传统方法进行繁琐的空间分析, 只需建立空间直角坐标系进行向量运算, 而如何建立恰当的坐标系,成为用向量解题的关键步骤之一.所谓“建立适当 的坐标系”,一般应使尽量多的点在数轴上或便于运算.一,利用共顶点的相互垂直的三条线构建直角坐标系例 1( 2021 高考真题重庆理 19)(本小题满分 12 分 如图,在可编辑资料 -- -- -- 欢迎下载直三棱柱ABCA1 B1C1中, AB=4, AC=BC=,3D为 AB的中点可编辑资料 -- -- -- 欢迎下载(Ⅰ)求点 C 到平面 A1 ABB1 的距离 ;可编辑资料 -- -- -- 欢迎下载(Ⅱ)如AB1A1C 求二面角 的平面角的余弦值 .可编辑资料 -- -- -- 欢迎下载【答案】 解: 〔1〕由 AC=BC,D 为 AB 的中点,得 CD⊥AB.又 CD⊥ AA1,故 CD⊥面 A1ABB1 ,所以点 C 到平面 A1ABB1 的距离为CD= BC2- BD2= 5.〔2〕 解法一:如图,取 D1 为 A1B1 的中点,连结 DD1,就 DD1 ∥AA1∥ CC1. 又由〔1〕知 CD⊥面 A1ABB1,故 CD⊥A1D,CD⊥ DD1,所以∠ A1 DD1 为所求的二面角 A1-CD- C1的平面角.因 A1D 为 A1C在面 A1ABB1 上的射影, 又已知 AB1 ⊥A1C,由三垂线定理的逆定理得 AB1⊥A1D,从而∠ A1AB1,∠ A1DA都与∠ B1AB互余,因此∠ A1AB1=∠ A1DA,所以可编辑资料 -- -- -- 欢迎下载Rt A ADAA1Rt△B A A. 因此A1B1AA2= AD·A B = 8,得 AA=2 2.可编辑资料 -- -- -- 欢迎下载△ 1 ∽ 1 1= ,即 1 1 1 1AD AA1可编辑资料 -- -- -- 欢迎下载11从而 A D= AA2+ AD2= 2 3.所以,在 Rt △A1DD1 中,可编辑资料 -- -- -- 欢迎下载DD1cos∠A DD=AA1 6可编辑资料 -- -- -- 欢迎下载AA1 1 = = .1D 1D 3解法二: 如图,过 D作 DD1∥AA1 交 A1B1 于点 D1,在直三棱柱中, 易知 DB,DC,DD1 两两垂直.以 D 为原点,射线 DB,DC,DD1 分别为 x 轴,y 轴,z 轴的正半轴建立空间直角坐标系 D-xyz .- - -细心整理 - - - 欢迎下载 - - - 第 1 页,共 9 页可编辑资料 -- -- -- 欢迎下载精品word学习资料 可编辑资料 - - - - - - - - - - - - - - - --设直三棱柱的高为 h,就 A〔 - 2,0,0〕 ,A1 〔 - 2,0 ,h〕 ,B1〔2,0 ,h〕 ,C〔0 , 5,0〕 ,C1〔0 , 5, h〕 ,从而 A→B= 〔4,0 , h〕 ,A→C=〔2 , 5,- h〕 .1 111由A→B⊥A→C,有 8- h2=0,h=2 2.11故D→A=〔 -2,0,2 2〕 ,C→C=〔0,0,2 2〕 , →DC= 〔0 , 5, 0〕 .设平面 A1CD的法向量为 m= 〔 x1, y1 ,z1〕 ,就 m⊥→DC,m⊥D→A1,即取 z1= 1,得 m=〔 2,0,1〕 ,设平面 C1CD的法向量为 n= 〔 x2, y2 ,z2〕 ,就 n⊥→DC,n⊥C→C1,即取 x2= 1,得 n=〔1,0,0〕 ,所以m·n 2 6cos〈m,n〉= = =可编辑资料 -- -- -- 欢迎下载| m|| n|2+ 1·1 3 .可编辑资料 -- -- -- 欢迎下载所以二面角 A -CD- C 的平面角的余弦值为 61 1 3 .二,利用线面垂直关系构建直角坐标系例 2. 如以下图, AF ,DE 分别是圆 O ,圆O1 的直径, AD 与两圆所在的平 面 均 垂 直 , AD 8 . BC 是 圆 O 的 直 径 ,可编辑资料 -- -- -- 欢迎下载AB AC6 , OE //AD .可编辑资料 -- -- -- 欢迎下载(I) 求二面角 B AD F 的大小.(II) 求直线 BD 与 EF 所成的角的余弦值 .19. 解: 〔 Ⅰ〕 ∵AD与两圆所在的平面均垂直 ,∴AD⊥AB, AD⊥AF,故∠ BAD是二面角 B— AD— F 的平面角, 依题意可知, ABCD是正方形,所以∠ BAD= 450.即二面角 B—AD—F 的大小为 450 .〔 Ⅱ〕 以 O 为原点, BC,AF,OE所在直线为坐标轴,建立空间直角坐- - -细心整理 - - - 欢迎下载 - - - 第 2 页,共 9 页可编辑资料 -- -- -- 欢迎下载精品word学习资料 可编辑资料 - - - - - - - - - - - - - - - --可编辑资料 -- -- -- 欢迎下载标系(如以下图) ,就 O(0, 0,0),A(0,3 2 , 0), B( 32 ,0,可编辑资料 -- -- -- 欢迎下载可编辑资料 -- -- -- 欢迎下载0) ,D( 0,3 2 ,8),E( 0, 0,8),F(0, 32 , 0)可编辑资料 -- -- -- 欢迎下载可编辑资料 -- -- -- 欢迎下载所以, BD〔 3 2, 32,8〕, FE〔0, 32,8〕可编辑资料 -- -- -- 欢迎下载可编辑资料 -- -- -- 欢迎下载设异面直线 BD与 EF 所成角为 ,就cos| cosBD, EF |82 直线 BD10可编辑资料 -- -- -- 欢迎下载与 EF所成的角为余弦值为 82 .10三,利用图形中的对称关系建立坐标系例 3 ( 2021 年重庆数学(理) ) 如图, 四棱锥 P ABCD 中, PA 底面 ABCD ,可编辑资料 -- -- -- 欢迎下载BC CD2, AC4, ACB ACD, F 为 PC 的中点 , AF PB .3可编辑资料 -- -- -- 欢迎下载(1) 求 PA 的长; 〔2〕 求二面角 B AF D 的正弦值 .【答案】解: 〔1〕如图,联结 BD 交 AC 于 O,由于 BC=CD,即△ BCD 为等腰三角形, 又 AC 平分∠ BCD,故 AC⊥ BD.以 O 为坐标原点, O→B,O→C,A→P的方向分别为 x 轴, y 轴, z 轴的正方向,建立空间直角坐标系 O可编辑资料 -- -- -- 欢迎下载- xyz,就 OC=π 1,而 AC= 4,得 AO=AC- OC=3.又 OD可编辑资料 -- -- -- 欢迎下载CDcos =3= π可编辑资料 -- -- -- 欢迎下载CDsin3= 3,故 A〔0,-3,0〕,B〔 3,0,0〕,C〔0,1,0〕,D〔- 3,可编辑资料 -- -- -- 欢迎下载0, 0〕.因 PA⊥底面 ABCD,可设 P〔0,- 3,z〕,由 F 为 PC 边中点,得可编辑资料 -- -- -- 欢迎下载F0,- 1, z2,又 A→F= 0,2, z2,P→B= 〔 3, 3,- z〕,因 AF⊥PB,可编辑资料 -- -- -- 欢迎下载→ → z2 →故AF·PB= 0,即 6- 2 = 0,z=2 3〔舍去- 2 3〕,所以 |PA|= 2 3.- - -细心整理 - - - 欢迎下载 - - - 第 3 页,共 9 页可编辑资料 -- -- -- 欢迎下载精品word学习资料 可编辑资料 - - - - - - - - - - - - - - - --〔2〕由〔1〕知A→D= 〔- 3,3,0〕,A→B= 〔 3,3,0〕,A→F= 〔0,2, 3〕.设平面 FAD 的法向量为 1= 〔x1,y1, z1〕,平面 FAB 的法向量为 2=〔x2,可编辑资料 -- -- -- 欢迎下载y2,z2〕.1·由A→D= 0,1·A→F=0,得可编辑资料 -- -- -- 欢迎下载可编辑资料 -- -- -- 欢迎下载- 3x1+3y1= 0, 2y1+ 3z1= 0,因此可取 1=〔3, 3,- 2〕.可编辑资料 -- -- -- 欢迎下载由 2·A→B= 0, 2·A→F=0,得 3x2+3y2= 0,可编辑资料 -- -- -- 欢迎下载2y2+ 3z2= 0,故可取 2=〔3,- 3, 2〕.可编辑资料 -- -- -- 欢迎下载从而向量 1, 2 的夹角的余弦值为可编辑资料 -- -- -- 欢迎下载cos〈, 〉= n1·n2 = 1可编辑资料 -- -- -- 欢迎下载1 2 |n1| ·|n2| 8..故二面角 B-AF- D 的正弦值为 3 78四,利用正棱锥的中心与高所在直线,投影构建直角坐标系例 4-1 ( 2021 大纲版数学(理) ) 如图, 四棱锥 P ABCD可编辑资料 -- -- -- 欢迎下载中, ABC BAD90o, BC2 AD ,PAB与 PAD 都是等边三角形 .可编辑资料 -- -- -- 欢迎下载可编辑资料 -- -- -- 欢迎下载(I) 证明:PB CD ;(II) 求二面角 A PD C 的余弦值 .可编辑资料 -- -- -- 欢迎下载【答案】 解: 〔1〕取 BC 的中点 E,联结 DE,就四边形 ABED 为正方形.过 P 作 PO⊥平面 ABCD,垂足为 O.联结 OA,OB, OD, OE.。

      点击阅读更多内容
      相关文档
      5.江苏省扬州市2023-2024学年高一上学期1月期末检测数学试题.docx 山西省长治市2023-2024学年高二上学期期末化学试题.docx 1.甘肃省张掖市某重点校2023-2024学年高一上学期9月月考数学试题.docx 山东省日照市第一中学2023-2024学年高一上学期12月月考数学试卷.docx 5.湖北省武汉市部分重点中学2023-2024学年高二上学期期中联考数学试题.docx 2.河南省部分名校2023-2024学年高二上学期1月期末考试数学试题.docx 山东省日照市第一中学2023-2024学年高二上学期第二次单元过关测试(12月)数学试题.docx 四川省德阳市高中2023-2024学年高二上学期期末教学高中政治试题.docx 3.安徽省合肥市普通高中联盟2023-2024学年高二上学期1月期末联考数学试题.docx 12.山西省晋中市2023-2024学年高一上学期期末调研数学试题.docx 天津市四校2023-2024学年高一上学期期末联考政治试题.docx 4.山西省太原市2023-2024学年高二上学期期中学业诊断数学试卷.docx 4.甘肃省武威市2023-2024学年高二下学期6月月考数学试题.docx 山东省威海市2023-2024学年高二上学期期末考试化学试题.docx 3.福建省莆田市五校联盟2023-2024学年高二上学期期中数学试题.docx 9.安徽省马鞍山市2023-2024学年高一上学期2月期末数学试题.docx 7.山西省2023-2024学年高二上学期11月期中考试数学试题.docx 9.重庆第十一中学校2023-2024学年高二下学期3月月考数学试题.docx 3.湖南省名校联考联合体2023-2024学年高一上学期期末考试数学试题.docx 4.江苏省徐州市2023-2024学年下学期高二年级第三次检测数学试题.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.