
二次根式的混合运算.docx
6页知识点一:二次根式的乘法法则: ( , ) ,即两个二次根式相乘,ab0b根指数不变,只把被开方数相乘.要点诠释:(1)在运用二次根式的乘法法则进行运算时,一定要注意:公式中 a、b 都必须是非负数;(2)该法则可以推广到多个二次根式相乘的运算:(3)若二次根式相乘的结果能化简必须化简,如 .416知识点二、积的算术平方根的性质: ( , ) ,即积的算术平方根ba0b等于积中各因式的算术平方根的积.要点诠释:(1)在这个性质中,a、b 可以是数,也可以是代数式,无论是数,还是代数式,都必须满足 , 才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有0意义,等式也就不能成立了;(2) 二次根式的化简关键是将被开方数分解因数,把含有 形式的 移到根号外面.2a(3)作用:积的算术平方根的性质对二次根式化简(4)步骤:①对被开方数分解因数或分解因式,结果写成平方因式乘以非平方因式即:2②利用积的算术平方根的性质 ( , ) ;ba0b③利用 (一个数的平方的算术平方根等于这个数的绝)0(2aa对值)即被开方数中的一些因式移到根号外;(5)被开方数是整数或整式可用积的算术平方根的性质对二次根式化简知识点三、二次根式的除法法则: ( , ) ,即两个二次根式相除,根指数ba0不变,把被开方数相除.要点诠释:(1)在进行二次根式的除法运算时,对于公式中被开方数 a、b 的取值范围应特别注意,其中 , ,因为 b在分母上,故 b不能为 0.0a(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.知识点四、商的算术平方根的性质 ( , ) ,即商的算术平方根等于被ba0除式的算术平方根除以除式的算术平方根.要点诠释:(1)利用:运用次性质也可以进行二次根式的化简,运用时仍要注意符号问题. 对于公式中被开方数 a、b 的取值范围应特别注意,其中 , ,因为0abb在分母上,故 b不能为 0.(2)步骤:①利用商的算术平方根的性质: ( , ) b② 分别对 , 利用积的算术平方根的性质化简a b③分母不能有根号,如果分母有根号要分母有理化,即( )a2)(0(3) 被开方数是分数或分式可用商的算术平方根的性质对二次根式化简知识点五:1.最简二次根式定义:当二次根式满足以下两条:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.把符合这两个条件的二次根式,叫做最简二次根式.在二次根式的运算中,最后的结果必须化为最简二次根式或有理式. 要点诠释:(1)最简二次根式中被开方数不含分母;(2)最简二次根式被开方数中每一个因数或因式的次数都小于根指数 2,即每个因数或因式从次数只能为 1次.2.把二次根式化成最简二次根式的一般步骤:(1)把根号下的带分数或绝对值大于 1的数化成假分数,把绝对值小于 1的小数化成分数;(2)被开方数是多项式的要进行因式分解; (3)使被开方数不含分母;(4)将被开方数中能开得尽方的因数或因式,用它们的算术平方根代替后移到根号外;(5)化去分母中的根号; (6)约分.3.把一个二次根式化简,应根据被开方数的不同形式,采取不同的变形方法.实际上只是做两件事:一是化去被开方数中的分母或小数;二是使被开方数中不含能开得尽方的因数或因式.知识点六、同类二次根式1.定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.要点诠释:(1)判断几个二次根式是否是同类二次根式,必须先将二次根式化成最简二次根式,再看被开方数是否相同; (2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关.2.合并同类二次根式合并同类二次根式,只把系数相加减,根指数和被开方数不变.(合并同类二次根式的方法与整式加减运算中的合并同类项类似) 要点诠释:(1)根号外面的因式就是这个根式的系数; (2)二次根式的系数是带分数的要变成假分数的形式;(3)不是同类二次根式,不能合并知识点七、二次根式的加减二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用.二次根式加减运算的步骤:(1)将每个二次根式都化简成为最简二次根式;(2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;(3)合并同类二次根式.知识点八、二次根式的混合运算二次根式的混合运算是对二次根式的乘除及加减运算法则的综合运用.要点诠释: (1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;(2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用;(3)二次根式混合运算的结果应写成最简形式,这个形式应是最简二次根式,或几个非同类最简二次 式之和或差,或是有理 式.规律方法指导二次根式的运算,主要研究二次根式的乘除和加减.(1)二次根式的乘除,只需将被开方数进行乘除,其依据是:; ;(2)二次根式的加减类似于整式的加减,关键是合并同类二次根式.通常应先将二次根式化简,再把同类二次根式合并.二次根式运算的结果应尽可能化简.例题:1. 已知 ,且 为偶数,求 的值。
96xx25411x2. 计算(1) ·(- )÷ (m>0,n>0); (2)-3 ÷()× (a> 0).3. 下列各式中,哪些是最简二次根式?哪些不是?请说明理由.(1) ;(2) ;(3) ;(4) ;(5) ;(6) ;(7).4.把下列各式化成最简二次根式. (1) ; (2) ; (3) ; (4) ; (5)5. 计算(1)3 -9 +3 ; (2)( + )+( - );(3) ; (4) .6. 计算(1)( +6)(3- ); (2)( + )( - ).(3) 202013__A7. 已知 4x2+y2-4x-6y+10=0,求( +y2 )-(x2 -5x )的值.8. 先化简,再求值.(6x + )-(4y + ),其中 x= ,y=27.。
