
中考数学模拟测试试题(一元二次方程) 试题.doc
21页一元二次方程一、选择题1.方程(x﹣2)(x+3)=0的解是( )A.x=2 B.x=﹣3 C.x1=﹣2,x2=3 D.x1=2,x2=﹣32.方程x2﹣5x=0的解是( )A.x1=0,x2=﹣5 B.x=5 C.x1=0,x2=5 D.x=03.下列计算正确的是( )A.a4•a3=a12 B. C.(x2+1)0=0 D.若x2=x,则x=14.一元二次方程x(x﹣2)=2﹣x的根是( )A.﹣1 B.2 C.1和2 D.﹣1和25.一个三角形的两边长分别为3和6,第三边的边长是方程(x﹣2)(x﹣4)=0的根,则这个三角形的周长是( )A.11 B.11或13C.13 D.以上选项都不正确6.方程x2﹣2x=0的解为( )A.x1=1,x2=2 B.x1=0,x2=1 C.x1=0,x2=2 D.x1=,x2=27.一元二次方程x2﹣2x﹣3=0的解是( )A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=﹣3 D.x1=1,x2=38.方程x(x﹣3)+x﹣3=0的解是( )A.3 B.﹣3,1 C.﹣1 D.3,﹣19.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x满足的方程是( )A.(1+x)2= B.(1+x)2= C.1+2x= D.1+2x=10.今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是( )A.2500x2=3500 B.2500(1+x)2=3500C.2500(1+x%)2=3500 D.2500(1+x)+2500(1+x)2=350011.某校准备修建一个面积为180平方米的矩形活动场地,它的长比宽多11米,设场地的宽为x米,则可列方程为( )A.x(x﹣11)=180 B.2x+2(x﹣11)=180 C.x(x+11)=180 D.2x+2(x+11)=18012.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加1600m2.设扩大后的正方形绿地边长为x m,下面所列方程正确的是( )A.x(x﹣60)=1600 B.x(x+60)=1600 C.60(x+60)=1600 D.60(x﹣60)=160013.我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的平均增长率为x,则下列方程正确的是( )A.1.4(1+x)=4.5 B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5 D.1.4(1+x)+1.4(1+x)2=4.514.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是( )A.560(1+x)2=315 B.560(1﹣x)2=315 C.560(1﹣2x)2=315 D.560(1﹣x2)=31515.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是( )A.x2+9x﹣8=0 B.x2﹣9x﹣8=0 C.x2﹣9x+8=0 D.2x2﹣9x+8=016.沅江市近年来大力发展芦笋产业,某芦笋生产企业在两年内的销售额从20万元增加到80万元.设这两年的销售额的年平均增长率为x,根据题意可列方程为( )A.20(1+2x)=80 B.220(1+x)=80 C.20(1+x2)=80 D.20(1+x)2=8017.绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为( )A.x(x﹣10)=900 B.x(x+10)=900 C.10(x+10)=900 D.2[x+(x+10)]=90018.三角形的两边长分别是3和6,第三边是方程x2﹣6x+8=0的解,则这个三角形的周长是( )A.11 B.13 C.11或13 D.11和13 二、填空题(共9小题)19.一元二次方程2x2﹣3x+1=0的解为 .20.若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b= .21.某楼盘2013年房价为每平方米8100元,经过两年连续降价后,2015年房价为7600元.设该楼盘这两年房价平均降低率为x,根据题意可列方程为 .22.新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?设每件童装应降价x元,可列方程为 .23.一元二次方程x(x﹣6)=0的两个实数根中较大的根是 .24.一元二次方程x2﹣3x=0的根是 .25.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为 .26.对于实数a,b,定义运算“﹡”:a﹡b=.例如4﹡2,因为4>2,所以4﹡2=42﹣42=8.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2= .27.现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣33+5,若x★2=6,则实数x的值是 . 三、解答题28.解方程:x2﹣10x+9=0.29.阅读下列材料,并用相关的思想方法解决问题.计算:(1﹣﹣﹣)(+++)﹣(1﹣﹣﹣﹣)(++).令++=t,则原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣t﹣t+t2=问题:(1)计算(1﹣﹣﹣﹣…﹣)(++++…++)﹣(1﹣﹣﹣﹣﹣…﹣﹣)(+++…+);(2)解方程(x2+5x+1)(x2+5x+7)=7.30.解方程:3x(x﹣2)=2(2﹣x) 试题解析 一、选择题(共18小题)1.方程(x﹣2)(x+3)=0的解是( )A.x=2 B.x=﹣3 C.x1=﹣2,x2=3 D.x1=2,x2=﹣3【考点】解一元二次方程-因式分解法.【分析】根据已知得出两个一元一次方程,求出方程的解即可.【解答】解:(x﹣2)(x+3)=0,x﹣2=0,x+3=0,x1=2,x2=﹣3,故选D.【点评】本题考查了解一元关键是能把一元一次方程和解一元二次方程的应用,关键是能把一元二次方程转化成一元一次方程. 2.方程x2﹣5x=0的解是( )A.x1=0,x2=﹣5 B.x=5 C.x1=0,x2=5 D.x=0【考点】解一元二次方程-因式分解法.【专题】压轴题.【分析】在方程左边两项中都含有公因式x,所以可用提公因式法.【解答】解:直接因式分解得x(x﹣5)=0,解得x1=0,x2=5.故选:C.【点评】本题考查了因式分解法解一元二次方程,当方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用. 3.下列计算正确的是( )A.a4•a3=a12 B. C.(x2+1)0=0 D.若x2=x,则x=1【考点】解一元二次方程-因式分解法;算术平方根;同底数幂的乘法;零指数幂.【分析】A、同底数的幂相乘,底数不变,指数相加;B、通过开平方可以求得的值;C、零指数幂:a0=1(a≠0);D、先移项,然后通过提取公因式对等式的左边进行因式分解,然后解方程.【解答】解:A、a4•a3=a(4+3)=a7.故本选项错误;B、==|3|=3,故本选项正确;C、∵x2+1≠0,∴(x2+1)0=1.故本选项错误;D、由题意知,x2﹣x=x(x﹣1)=0,则x=0或x=1.故本选项错误.故选B.【点评】本题综合考查了零指数幂、算术平方根、同底数幂的乘法以及解一元二次方程﹣﹣因式分解法.注意,任何不为零的数的零次幂等于1. 4.一元二次方程x(x﹣2)=2﹣x的根是( )A.﹣1 B.2 C.1和2 D.﹣1和2【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】先移项得到x(x﹣2)+(x﹣2)=0,然后利用提公因式因式分解,最后转化为两个一元一次方程,解方程即可.【解答】解:x(x﹣2)+(x﹣2)=0,∴(x﹣2)(x+1)=0,∴x﹣2=0或x+1=0,∴x1=2,x2=﹣1.故选D.【点评】本题考查了运用因式分解法解一元二次方程的方法:利用因式分解把一个一元二次方程化为两个一元一次方程. 5.一个三角形的两边长分别为3和6,第三边的边长是方程(x﹣2)(x﹣4)=0的根,则这个三角形的周长是( )A.11 B.11或13C.13 D.以上选项都不正确【考点】解一元二次方程-因式分解法;三角形三边关系.【专题】计算题.【分析】由两数相乘积为0,两数中至少有一个为0求出方程的解得到第三边长,即可求出周长.【解答】解:方程(x﹣2)(x﹣4)=0,可得x﹣2=0或x﹣4=0,解得:x=2或x=4,当x=2时,2,3,6不能构成三角形,舍去;则x=4,此时周长为3+4+6=13.故选C【点评】此题考查了解一元二次方程﹣因式分解法,以及三角形的三边关系,求出x的值是解本题的关键. 6.方程x2﹣2x=0的解为( )A.x1=1,x2=2 B.x1=0,x2=1 C.x1=0,x2=2 D.x1=,x2=2【考点】解一元二次方程-因式分解法.【分析】先分解因式,即可得出两个一元一次方程,求出即可.【解答】解:x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2,故选C.【点评】本题考查了解一元二次方程的应用,关键是把一元二次方程转化成一元一次方程. 7.一元二次方程x2﹣2x﹣3=0的解是( )A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=﹣3 D.x1=1,x2=3【考点】解一元二次方程-因式分解法.【分析】首先对x2﹣2x﹣3=0进行因式分解得到(x﹣3)(x+1)=0,然后得到x+1=0或x﹣3=0,解两个一元一次方程即可.【解答】解:∵x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,∴x+1=0或x﹣3=0,∴x1=﹣1,x2=3.故选:A.【点评】本题主要考查了因式分解法解一元二次方程的知识,解答本题的关键是掌握因式分解法解一元二次方程的步骤,此题难度不大,是一道中考常见试题. 8.(2013•西藏)方程x(x﹣3)+x﹣3=0的解是( )A.3 B.﹣3,1 C.﹣1 D.3,﹣1【考点】解一元二次方程-因式分解法.【分析】先分解因式,即可得出两个一元一次方程,。












