
相似三角形证明技巧.doc
62页相似三角形解题方法、技巧、步骤、辅助线解析一、相似三角形(1)三角形相似的条件:①;②;③.二、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.三、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单;2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例;a)已知一对等角角找另一角两角对应相等,两三角形相似找夹边对应成比例两边对应成比例且夹角相等,两三角形相似b)己知两边对应成比例找夹角相等两边对应成比例且夹角相等,两三角形相似找第三边也对应成比例三边对应成比例,两三角形相似找一个直角斜边、直角边对应成比例,两个直角三角形相似c)己知一个直角找另一角两角对应相等,两三角形相似找两边对应成比例判定定理2d)有等腰关系找顶角对应相等判定定理1找底角对应相等判定定理1找底和腰对应成比例判定定理3e)相似形的传递性若△1∽△2,△2∽△3,则△1∽△3四、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。
具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题例1、已知:如图,ΔABC中,CE⊥AB,BF⊥AC.求证: (判断“横定”还是“竖定”? )例2、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗?说明理由分析方法:1)先将积式______________2)______________( “横定”还是“竖定”? )例3、已知:如图,△ABC中,∠ACB=900,AB的垂直平分线交AB于D,交BC延长线于F 求证:CD2=DE·DF 分析方法:1)先将积式______________2)______________( “横定”还是“竖定”? )五、过渡法(或叫代换法)1、 等量过渡法(等线段代换法)例1:如图3,△ABC中,AD平分∠BAC, AD的垂直平分线FE交BC的延长线于E.求证:DE2=BE·CE.分析:2、 等比过渡法(等比代换法)例2:如图4,在△ABC中,∠BAC=90°,AD⊥BC,E是AC的中点,ED交AB的延长线于点F.求证:.3、等积过渡法(等积代换法)例3:如图5,在△ABC中,∠ACB=90°,CD是斜边AB上的高,G是DC延长线上一点,过B作BE⊥AG,垂足为E,交CD于点F.求证:CD2=DF·DG.小结:证明等积式思路口诀:“遇等积,化比例:横找竖找定相似;不相似,不用急:等线等比来代替。
同类练习:1.如图,点D、E分别在边AB、AC上,且∠ADE=∠C 求证:(1)△ADE∽△ACB; (2)AD·AB=AE·AC.(1题图)2.如图,△ABC中,点DE在边BC上,且△ADE是等边三角形,∠BAC=120°求证: (1)△ADB∽△CEA;(2) DE²=BD·CE; (3)AB·AC=AD·BC.3.如图,平行四边形ABCD中,E为BA延长线上一点,∠D=∠ECA. 求证:AD·EC=AC·EB .5.如图,E是平行四边形的边DA延长线上一点,EC交AB于点G,交BD于点F,求证:FC²=FG·EF.6.如图,E是正方形ABCD边BC延长线上一点,连接AE交CD于F,过F作FM∥BE交DE于M.求证:FM=CF.7.如图,△ABC中,AB=AC,点D为BC边中点,CE∥AB,BE分别交AD、AC于点F、G,连接FC.求证:(1)BF=CF. (2)BF²=FG·FE.8.如图,∠ABC=90°,AD=DB,DE⊥AB, 求证:DC²=DE·DF.9.如图,四边形ABCD中,AB∥CD,AB⊥BC,AC⊥BD。
AD= BD,过E作EF∥AB交AD于F.是说明:(1)AF=BE;(2)AF²=AE·EC.10.△ABC中,∠BAC=90°,AD⊥BC,E为AC中点求证:AB:AC=DF:AF11.已知,CE是RT△ABC斜边AB上的高,在EC延长线上任取一点P,连接AP,作BG⊥AP,垂足为G,交CE于点D.试证:CE²=ED·EP.六、证比例式和等积式的方法: 可用口诀:遇等积,改等比,横看竖看找关系;三点定形用相似,三点共线取平截;平行线,转比例,等线等比来代替;两端各自找联系,可用射影和园幂.图5AEFBDGCH例1 如图5在△ABC中,AD、BE分别是BC、AC边上的高,DF⊥AB于F,交AC的延长线于H,交BE于G,求证:(1)FG / FA=FB / FH (2)FD是FG与FH的比例中项.例2 如图6,□ABCD中,E是BC上的一点,AE交BD于点F,已知BE:EC=3:1,CADBEF图6 S△FBE=18,求:(1)BF:FD (2)S△FDABEACDMN例3 如图7在△ABC中,AD是BC边上的中线,M是AD的中点,CM的延长线交AB于N.求:AN:AB的值;ABCEDGF例4 如图8在矩形ABCD中,E是CD的中点,BE⊥AC交AC于F,过F作FG∥AB交AE于G.求证:AG 2=AF×FCAEBDMCF例5 如图在△ABC中,D是BC边的中点,且AD=AC,DE⊥BC,交AB于点E,EC交AD于点F.(1)求证:△ABC∽△FCD;(2)若S△FCD=5,BC=10,求DE的长.图CEDAFMB例6 如图10过△ABC的顶点C任作一直线与边AB及中线AD分别交于点F和E.过点D作DM∥FC交AB于点M.(1)若S△AEF:S四边形MDEF=2:3,求AE:ED; (2)求证:AE×FB=2AF×ED例7 己知如图11在正方形ABCD的边长为1,P是CD边的中点,Q段BC上,当BQ为何值时,△ADP与△QCP相似?PADBQC图11图12ADBCP1P2P3例8 己知如图12在梯形ABCD中,AD∥BC,∠A=900,AB=7,AD=2,BC=3.试在边AB上确定点P的位置,使得以P、A、D为顶点的三角形与以P、B、C为顶点的三角形相似.例9.如图,已知△ABC中,AB=AC,AD是BC边上的中线,CF∥BA,BF交AD于P点,交AC于E点。
求证:BP2=PE·PF 例10.如图,已知:在△ABC中,∠BAC=900,AD⊥BC,E是AC的中点,ED交AB的延长线于F八、相似三角形中的辅助线在添加辅助线时,所添加的辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线段或得出等角,等边,从而为证明三角形相似或进行相关的计算找到等量关系主要的辅助线有以下几种:(一)、作平行线例1. 如图,的AB边和AC边上各取一点D和E,且使AD=AE,DE延长线与BC延长线相交于F,求证:例2. 如图,△ABC中,AB 二)、作延长线例7. 如图,RtABC中,CD为斜边AB上的高,E为CD的中点,AE的延长线交BC于F,FGAB于G,求证:FG=CFBF例8.如图4-1,已知平行四边ABCD中,E是AB的中点,,连E、F交AC于G.求AG:AC的值.(三)、作中线例10:已知:如图,△ABC中,AB=AC,BD⊥AC于D.求证: BC2=2CD·AC.中考综合题型1.已知:如图,在中,是角平分线,试利用三角形相似的关系说明.2.如图,矩形中,厘米,厘米().动点同时从点出发,分别沿,运动,速度是厘米/秒.过作直线垂直于,分别交,于.当点到达终点时,点也随之停止运动.设运动时间为秒.(1)若厘米,秒,则______厘米;(2)若厘米,求时间,使,并求出它们的相似比;DQCPNBMADQCPNBMA3.如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)当t=2时,判断△BPQ的形状,并说明理由;(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;4. 如图(10)所示:等边△ABC中,线段AD为其内角角平分线,过D点的直线B1C1⊥AC于C1交AB的延长线于B1.⑴请你探究:,是否都成立?⑵请你继续探究:若△ABC为任意三角形,线段AD为其内角角平分线,请问一定成立吗?并证明你的判断.5. 如图12,在平面直角坐标系中,点A、C分别在x轴、y轴上,四边形ABCO为矩形,AB=16,点D与点A关于y轴对称,AB:BC=4:3,点E、F分别是线段AD、AC上的动点(点E不与点A、D重合),且∠CEF=∠ACB.(1)求AC的长和点D的坐标;(2)说明△AEF与△DCE相似;6. 如图,在Rt△ABC中,∠B=90°,AB=1,BC=,以点C为圆心,CB为半径的弧交CA于点D;以点A为圆心,AD为半径的弧交AB于点E. (1)求AE的长度;(2)。












