好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2013高考数学(理)一轮复习教案:第八篇_立体几何第3讲_空间点、直线、平面之间的位置关系.doc

5页
  • 卖家[上传人]:人***
  • 文档编号:550473646
  • 上传时间:2023-10-02
  • 文档格式:DOC
  • 文档大小:399.50KB
  • / 5 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 3 空间点、直线、平面之间的位置关系2013年高考预测1.本讲以考查点、线、面的位置关系为主,同时考查逻辑推理能力与空间想象能力.2.有时考查应用公理、定理证明点共线、线共点、线共面的问题.3.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.【复习指导】1.掌握平面的基本性质,在充分理解本讲公理、推论的基础上结合图形理解点、线、面的位置关系及等角定理.2.异面直线的判定与证明是本部分的难点,定义的理解与运用是关键.基础梳理1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.(2)公理2:经过不在同一条直线上的三点,有且只有一个平面.(3)公理3:如果两个平面(不重合的两个平面)有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线.推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.2.直线与直线的位置关系(1)位置关系的分类(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角或直角叫做异面直线a,b所成的角(或夹角).②范围:.3.直线与平面的位置关系有平行、相交、在平面内三种情况.4.平面与平面的位置关系有平行、相交两种情况.5.平行公理:平行于同一条直线的两条直线互相平行.6.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.两种方法异面直线的判定方法:(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线.(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.三个作用(1)公理1的作用:①检验平面;②判断直线在平面内;③由直线在平面内判断直线上的点在平面内.(2)公理2的作用:公理2及其推论给出了确定一个平面或判断“直线共面”的方法.(3)公理3的作用:①判定两平面相交;②作两平面相交的交线;③证明多点共线.考向一 平面的基本性质【例1】►正方体ABCDA1B1C1D1中,P、Q、R分别是AB、AD、B1C1的中点,那么,正方体的过P、Q、R的截面图形是(  ).A.三角形 B.四边形 C.五边形 D.六边形答案 D 画几何体的截面,关键是画截面与几何体各面的交线,此交线只需两个公共点即可确定.作图时充分利用几何体本身提供的面面平行等条件,可以更快的确定交线的位置.【训练1】 下列如图所示是正方体和正四面体,P、Q、R、S分别是所在棱的中点,则四个点共面的图形是________.答案 ①②③考向二 异面直线【例2】►如图所示,正方体ABCDA1B1C1D1中,M、N分别是A1B1、B1C1的中点.问:(1)AM和CN是否是异面直线?说明理由;(2)D1B和CC1是否是异面直线?说明理由.【训练2】 在下图中,G、H、M、N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有________(填上所有正确答案的序号).解析 如题干图(1)中,直线GH∥MN;图(2)中,G、H、N三点共面,但M∉面GHN,因此直线GH与MN异面;图(3)中,连接MG,GM∥HN,因此GH与MN共面;图(4)中,G、M、N共面,但H∉面GMN,∴GH与MN异面.所以图(2)、(4)中GH与MN异面.答案 (2)(4)考向三 异面直线所成的角【例3】►(2011·宁波调研)正方体ABCDA1B1C1D1中.(1)求AC与A1D所成角的大小;(2)若E、F分别为AB、AD的中点,求A1C1与EF所成角的大小.考向四 点共线、点共面、线共点的证明【例4】►正方体ABCDA1B1C1D1中,E、F分别是AB和AA1的中点.求证:(1)E、C、D1、F四点共面;(2)CE、D1F、DA三线共点.[审题视点] (1)由EF∥CD1可得;(2)先证CE与D1F相交于P,再证P∈AD.证明 (1)如图,连接EF,CD1,A1B.∵E、F分别是AB、AA1的中点,∴EF∥BA1.又A1B∥D1C,∴EF∥CD1,∴E、C、D1、F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE、D1F、DA三线共点.常见错误——点、直线、平面位置关系考虑不全致误【问题诊断】 由于空间点、直线、平面的位置关系是在空间考虑,这与在平面上考虑点、线的位置关系相比复杂了很多,特别是当直线和平面的个数较多时,各种位置关系错综复杂、相互交织,如果考虑不全面就会导致一些错误的判断.【防范措施】 借助正方体、三棱锥、三棱柱模型来分析.【示例】►(2011·四川)l1,l2,l3是空间三条不同的直线,则下列命题正确的是(  ).A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面错因 受平面几何知识限制,未能全面考虑空间中的情况.实录 甲同学:A 乙同学:C丙同学:D.正解 在空间中,垂直于同一直线的两条直线不一定平行,故A错;两平行线中的一条垂直于第三条直线,则另一条也垂直于第三条直线,B正确;相互平行的三条直线不一定共面,如三棱柱的三条侧棱,故C错;共点的三条直线不一定共面,如三棱锥的三条侧棱,故D错.答案 B【试一试】 (2010·江西)过正方体ABCDA1B1C1D1的顶点A作直线l,使l与棱AB,AD,AA1所成的角都相等,这样的直线l可以作(  ).A.1条 B.2条C.3条 D.4条[尝试解答] 如图,连结体对角线AC1,显然AC1与棱AB、AD,AA1所成的角都相等,所成角的正切值都为.联想正方体的其他体对角线,如连结BD1,则BD1与棱BC、BA、BB1所成的角都相等,∵BB1∥AA1,BC∥AD,∴体对角线BD1与棱AB、AD、AA1所成的角都相等,同理,体对角线A1C、DB1也与棱AB、AD、AA1所成的角都相等,过A点分别作BD1、A1C、DB1的平行线都满足题意,故这样的直线l可以作4条.答案 D第 5 页 共 5 页。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.