好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

远期与期货定价.ppt

52页
  • 卖家[上传人]:桔****
  • 文档编号:579445048
  • 上传时间:2024-08-26
  • 文档格式:PPT
  • 文档大小:251.50KB
  • / 52 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 2 一、远期价值一、远期价值 指远期合约(约束力)价值依赖于交割价指远期合约(约束力)价值依赖于交割价格与标的价格(变化),格与标的价格(变化),因此不同时刻合约有不因此不同时刻合约有不同价值     在合约签订时在合约签订时,如果信息对称的,而且合约,如果信息对称的,而且合约双方对未来的预期相同,对于一份公平的合约双方对未来的预期相同,对于一份公平的合约(理论上的,实际难以实现),多空双方所选择(理论上的,实际难以实现),多空双方所选择的交割价格应的交割价格应使远期价值在签署合约时等于零使远期价值在签署合约时等于零     在合约签订后在合约签订后,由于交割价格不变,但标的,由于交割价格不变,但标的价格变,多空双方的价格变,多空双方的远期价值随标的资产价格的远期价值随标的资产价格的变化而变化变化而变化 3 二、远期价格二、远期价格 它是指使远期合约签订时价值为零的交割价它是指使远期合约签订时价值为零的交割价格远期价格是理论上的交割价格远期价格是理论上的交割价格  一份公平合理的远期合约在签订的当天应使 一份公平合理的远期合约在签订的当天应使交割价格等于远期价格。

      如果实际交割价格不等交割价格等于远期价格如果实际交割价格不等于这个理论上的远期价格,该远期合约价值对于于这个理论上的远期价格,该远期合约价值对于多空双方来说就都不为零多空双方来说就都不为零 ,实际上隐含了套利空,实际上隐含了套利空间   在远期合约签订之后,交割价格已经确定,在远期合约签订之后,交割价格已经确定,远期合约价值不一定为零,远期价格也就不一定远期合约价值不一定为零,远期价格也就不一定等于交割价格等于交割价格 4 三、远期交易的损益曲线三、远期交易的损益曲线 在远期交易时应该取远期价格作为交割价格,在远期交易时应该取远期价格作为交割价格,使使 合约双方都处于公平合理,这时合约双方的成合约双方都处于公平合理,这时合约双方的成本都是本都是0所以在交易远期合约时双方都不必向对所以在交易远期合约时双方都不必向对方支付任何费用,即方支付任何费用,即远期交易具有远期交易具有0成本性成本性 但是合约一经签订,由于标的价格的变化,但是合约一经签订,由于标的价格的变化,可使其中一方获利,而另一方造成损失可使其中一方获利,而另一方造成损失 如果标的价格上升,则多方获得利益而空方如果标的价格上升,则多方获得利益而空方受到损失;如果标的价格下跌,则空方获得利益受到损失;如果标的价格下跌,则空方获得利益而多方受到损失。

      而多方受到损失5 6 这种获利或损失对双方是对称的,即这种获利或损失对双方是对称的,即远期交易的损益具有对称性远期交易的损益具有对称性 设合约在设合约在T时刻到期,此时标资产的价时刻到期,此时标资产的价格为格为ST,则合约多空双方在,则合约多空双方在T时刻的回报分时刻的回报分别是别是 R=ST-X,,R=X- ST 再根据再根据0成本性和对称性,就得到远期成本性和对称性,就得到远期交易的损益曲线:交易的损益曲线: 收益收益 多方损益多方损益 0 标的价格标的价格 空方损益空方损益 远期交易多空双方的损益曲线远期交易多空双方的损益曲线 四、期货价格(与习惯称呼的期货价格不四、期货价格(与习惯称呼的期货价格不同,这里是指理论上合理的期货价格)同,这里是指理论上合理的期货价格) 在期货合约中,我们定义在期货合约中,我们定义期货价格期货价格((Futures Prices))为使期货合约价值为为使期货合约价值为零的理论交割价格。

      零的理论交割价格 注意,在实际交易的期货价格是向这个注意,在实际交易的期货价格是向这个理论上的期货价格靠拢,但不一定真正等理论上的期货价格靠拢,但不一定真正等于这个理论价格于这个理论价格 8 因税收、交易费用、保证金、违约风险、流动因税收、交易费用、保证金、违约风险、流动性等方面的差异,远期价格与期货价格是有差异性等方面的差异,远期价格与期货价格是有差异的但是当有效期只有几个月时,远期价格与期的但是当有效期只有几个月时,远期价格与期货价格的差距通常很小因此,常常假定远期价货价格的差距通常很小因此,常常假定远期价格与期货价格相等下面分析二者的异同格与期货价格相等下面分析二者的异同 一、一、在一定条件下,期货价格在一定条件下,期货价格=远期价格远期价格  条件:期货合约与远期合约期限(条件:期货合约与远期合约期限(t=0交易,交易,T到期)相同,在合约期内无风险利率到期)相同,在合约期内无风险利率r不变,且远不变,且远期合约无违约风险期合约无违约风险 结论:结论:期货价格期货价格F0=远期价格远期价格G0 9 证:设证:设T时标的资产价格为时标的资产价格为ST,考虑两个组合,考虑两个组合 组合组合A(关于远期)(关于远期)金额金额G0投资无风险资产投资无风险资产+买入买入exp(rT)个远期合约个远期合约 A在时刻在时刻T价值价值G0exp(rT)+((ST-G0))exp(rT) =STexp(rT),, 组合组合B(关于期货)(关于期货)金额金额F0投资无风险资产投资无风险资产+在持有期每一天各买入在持有期每一天各买入一定的期货合约,使第一定的期货合约,使第i天末持有的期货合约达天末持有的期货合约达到到exp(ri)个个((逐步买进,到逐步买进,到T天持有量与远期合约数相天持有量与远期合约数相等等)。

      10 设第设第t(0远远期价格(期价格( F0>G0 )) 因为当标的价上涨时因为当标的价上涨时,期货价涨,利率也涨,期货价涨,利率也涨,期货多头期货多头卖期货而进行高利率的投资卖期货而进行高利率的投资。

      所以期货所以期货比远期有利;当标的价下跌时,期货价跌,利率比远期有利;当标的价下跌时,期货价跌,利率也跌期货多头因此要追加保证金,但也跌期货多头因此要追加保证金,但可按低利可按低利率融资率融资,所以期货也是方便的可见期货多头比,所以期货也是方便的可见期货多头比远期多头有利,期货价高于远期价远期多头有利,期货价高于远期价13 3、当标的价与利率负相关,则期货价格、当标的价与利率负相关,则期货价格<远远期价格期价格(F0

      因此在大多情况下,我们可以合理地假定调整因此在大多情况下,我们可以合理地假定远期价格与期货价格相等,并都用远期价格与期货价格相等,并都用F来表示 14      1、期货价格和现货价格的关系可以用基差、期货价格和现货价格的关系可以用基差(Basis)来描述来描述 所谓基差,是指现货价格与期货价格之差,即:所谓基差,是指现货价格与期货价格之差,即: 基差基差 = 现货价格现货价格 - 期货价格期货价格 修正基差修正基差=? 2、基差可能为正值也可能为负值但在期货合、基差可能为正值也可能为负值但在期货合约到期日,基差应为零这种现象称为期货价格约到期日,基差应为零这种现象称为期货价格收敛收敛于标的资产现货价格于标的资产现货价格 3、期货价格与现货价格的两个经济逻辑性、期货价格与现货价格的两个经济逻辑性15 4 4、、当当标标的的证证券券没没有有收收益益,,或或者者已已知知现现金金收收益益较较小小、、或或者者已已知知收收益益率率小小于于无无风风险险利利率率时时,,期期货货价价格格应应高高于现货价格于现货价格  现货价格期货价格 5 5、、当当标标的的证证券券的的已已知知现现金金收收益益较较大大,,或或者者已已知知收收益益率率大大于于无无风风险险利利率率时时,,期期货货价价格格应应小小于于现现货价格货价格。

      现货价格  期货价格 6 6、基差的增强和减弱、基差的增强和减弱 基基差差会会随随着着期期货货价价格格和和现现货货价价格格变变动动幅度的差距而变化幅度的差距而变化 b=s-fb=s-f,,Δb=Δs-ΔfΔb=Δs-Δf 当当Δs>ΔfΔs>Δf时时,,Δb>0Δb>0;;当当Δs<ΔfΔs<Δf时时,,Δb<0Δb<0 当当现现货货价价格格的的增增长长大大于于期期货货价价格格的的增增长长时时,,基基差差也也随随之之增增加加,,称称为为基基差差增增大大当当期期货货价价格格的的增增长长大大于于现现货货价价格格增增长长时时,,称称为为基差减少基差减少 7 7、可根据基差的强弱判断套期保值入市时机、可根据基差的强弱判断套期保值入市时机 空空头头套套期期保保值值在在基基差差较较弱弱时时入入市市,,在在基基差差较较强强时时平平仓仓;;多多头头套套期期保保值值在在基基差差较较强强时时入市,在基差较弱时平仓。

      入市,在基差较弱时平仓8 8、期货价格收敛于标的资产现货价格的原因、期货价格收敛于标的资产现货价格的原因 期货价格收敛于标的资产现货价格是由期货价格收敛于标的资产现货价格是由套利行为决定的例如在套利行为决定的例如在交割期交割期,出现期货,出现期货价价> >现货价,则买入现货,卖出期货进行交现货价,则买入现货,卖出期货进行交割获利,从而使期货价格下降,现货价格上割获利,从而使期货价格下降,现货价格上升,使二者相等升,使二者相等 为简便,本章分析是建立在如下假设前提下的:为简便,本章分析是建立在如下假设前提下的:1.没有交易费用和税收.没有交易费用和税收2.市场参与者能以相同的.市场参与者能以相同的无风险利率借入和贷出无风险利率借入和贷出资金资金3.远期合约.远期合约没有违约风险没有违约风险4..允许现货卖空允许现货卖空5.当套利机会出现时,市场参与者将参与套利活.当套利机会出现时,市场参与者将参与套利活动,从而使动,从而使套利机会消失套利机会消失,我们得到的理论价格就,我们得到的理论价格就是在没有套利机会下的均衡价格是在没有套利机会下的均衡价格 6.期货合约的.期货合约的保证金账户支付同样的无风险利率保证金账户支付同样的无风险利率。

      这意味着任何人均可不花成本地取得远期和期货的这意味着任何人均可不花成本地取得远期和期货的多头或空头地位多头或空头地位20 本章将要用到的符号主要有:本章将要用到的符号主要有:T:远期和期货合约的到期时间,单位为年远期和期货合约的到期时间,单位为年t:现在的时间,单位为年变量:现在的时间,单位为年变量T 和和t 是从合约是从合约生效之前的某个日期开始计算的,生效之前的某个日期开始计算的,T-t 代表远期和代表远期和期货合约中以年为单位的距离到期时间的剩余时期货合约中以年为单位的距离到期时间的剩余时间S:远期(期货)标的资产在时间:远期(期货)标的资产在时间t时的价格时的价格ST:远期(期货)标的资产在时间:远期(期货)标的资产在时间T时的价格时的价格(在(在T时刻这个值是个未知变量)时刻这个值是个未知变量)K:远期合约中的交割价格远期合约中的交割价格f:远期合约多头在:远期合约多头在t时刻的价值,即时刻的价值,即t时刻的远期价时刻的远期价值21 F::t时时刻刻的的远远期期合合约约和和期期货货合合约约中中的的理理论论远远期期价价格格和和理理论论期期货货价价格格,,如如无无特特别别注注明明,,分分别简称为远期价格和期货价格。

      别简称为远期价格和期货价格 r::T时时刻刻到到期期的的以以连连续续复复利利计计算算的的t时时刻刻的的无无风风险险利利率率((年年利利率率)),,如如无无特特别别说说明明,,利利率率均为均为连续复利连续复利的年利率的年利率22 23 (一(一) )问题问题:: 远远期期合合约约的的情情况况::多多头头持持有有t t时时刻刻签签约约,,T T时时刻刻到到期期的的远远期期合合约约,,合合约约规规定定在在T T以以价价格格K K买买入入1 1单单位位标的物设合约多头价值为标的物设合约多头价值为f f 标的物情况标的物情况:在:在t t到到T T的期间内,标的物无收益的期间内,标的物无收益 ((1 1))f=f=?? ((2 2)远期价格)远期价格F=F=?? (二)用复制技术和无套利定价方法求解问题(二)用复制技术和无套利定价方法求解问题 组合组合A A:: 一份远期合约多头(价值为一份远期合约多头(价值为f f))+ +现金现金KeKe-r-r((T-tT-t));; 组合组合B B:一单位标的物:一单位标的物 比较两个组合比较两个组合:: 在在T T时,组合时,组合A A价值价值= =组合组合B B价值,价值,A A复制了复制了B B。

        在在t t时,组合时,组合A A价值价值= =组合组合B B价值(?原理)价值(?原理)即:即: f+Kef+Ke-r-r((T-tT-t))=S=S (三)结果(三)结果 1 1、无收益资产的远期合约价值公式、无收益资产的远期合约价值公式:: f=S-Kef=S-Ke-r-r((T-tT-t)) 意意义义::在在时时刻刻t t,,无无收收益益资资产产的的远远期期合合约约多多头头价价值等于标的资产现货价格与交割价格现值之差值等于标的资产现货价格与交割价格现值之差 2 2、无收益资产的远期价格公式:、无收益资产的远期价格公式: 在在远远期期合合约约价价值值公公式式中中,,令令f=0f=0,,解解出出K K,,这这个个特殊的交割价格就是远期价格,记特殊的交割价格就是远期价格,记F F远期价格:远期价格: F=SeF=Ser r((T T--t t)) 意意义义::在在时时刻刻t t,,无无收收益益资资产产的的远远期期价价格格等等于于标标的资产现货价格的终值。

      的资产现货价格的终值 当用远期价格表示远期合约价值时:当用远期价格表示远期合约价值时: f=f=((F-KF-K))e e-r-r((T-tT-t)) 这这里里F-KF-K表表示示合合约约在在时时刻刻t t的的远远期期与与交交割割价价之之差,当差,当F=KF=K时,合约价值为时,合约价值为0 0 当当无无风风险险利利率率r r按按一一年年派派息息一一次次的的复复利利计计算算,,且且T-tT-t小于小于1 1年年时,时, ((1 1)无收益资产的远期价值公式:)无收益资产的远期价值公式: f=S-K/[1+rf=S-K/[1+r((T-tT-t))] ] ((2 2)无收益资产的远期价格公式:)无收益资产的远期价格公式: F=S[1+rF=S[1+r((T-tT-t))] ] 五、现货五、现货- -远期平价定理远期平价定理1 1、、远期价格公式远期价格公式:: F=SeF=Ser r((T T--t t)) 因为远期价格是合约价值为因为远期价格是合约价值为0 0的交割价格。

      所以令远的交割价格所以令远期合约价值等于期合约价值等于0 0,远期价格,远期价格F F等于交割价格等于交割价格K K由此,远期价格为此,远期价格为:F=SeF=Ser r((T T--t t))2 2、、现现货货- -远远期期平平价价定定理理((现现货货- -期期货货平平价价定定理理))::无无收收益益资资产产的的远远期期价价格格等等于于其其标标的的资资产产现现货货价价格格的的终终值 3 3、可用远期价格公式、可用远期价格公式F=SeF=Ser r((T-tT-t))确定远期合约的交割价确定远期合约的交割价格否则就会出现无风险套利否则就会出现无风险套利 ((1 1)若)若K>F=SeK>F=Ser r((T-tT-t)),即交割价格大于现货价格的终值即交割价格大于现货价格的终值交割价定高了交割价定高了,,套利思路:套利思路:以以S S价格买入标的,持有空头远期合约价格买入标的,持有空头远期合约 t t时刻时刻 组合组合A A::①①按无风险利率按无风险利率r r借入借入S S现金,期限为现金,期限为T-tT-t,期末,期末本息为本息为Se Se r r((T-tT-t));;②②用用S S购买一单位标的资产;购买一单位标的资产;③③同时卖同时卖出一份该资产的远期合约,交割价格为出一份该资产的远期合约,交割价格为K K。

      t t时时A A价值价值=0=0 T T时刻时刻 可将一单位标的资产用于交割换来可将一单位标的资产用于交割换来K K金额,并归还借款金额,并归还借款本息本息Se Se r r((T-tT-t)),所以,所以 A A的价值的价值=K-Se=K-Ser r((T-tT-t)) 这是无风险利润这是无风险利润 ((2 2)若)若K

      的无风险利润 例例 例:例: 假设某一种零息债券的远期合约在假设某一种零息债券的远期合约在6个月后到个月后到期,无风险利率为期,无风险利率为8%,债券的现价为,债券的现价为$90 ((1)求远期价格并指出当交割价格与远期价)求远期价格并指出当交割价格与远期价格不相符合时,可能存在的无风险套利机会格不相符合时,可能存在的无风险套利机会 ((2)如果交割价格定为平价,即)如果交割价格定为平价,即K=$90,求远,求远期合约价值期合约价值 零息债券:零息债券:中途不付息的债券中途不付息的债券 六、远期价格的期限结构六、远期价格的期限结构 远远期期价价格格的的期期限限结结构构::不不同同期期限限远远期期价价格格之之间的关系间的关系 设设F F为为在在T T时时刻刻交交割割的的远远期期价价格格,,F F* *为为在在T T* *时时刻刻交交割割的的远远期期价价格格, , r r为为T T时时刻刻到到期期的的无无风风险险利利率率,r,r* *为为T T* *时时刻刻到到期期的的无无风风险险利利率率, , 为为T T到到T T* *时时刻的无风险远期利率。

      刻的无风险远期利率 F=SeF=Ser r((T T--t t)) •两式相除消掉两式相除消掉S S后后, , •我们可以得到不同期限远期价格之间的关系:我们可以得到不同期限远期价格之间的关系: 其中用到连续复利率的即期利率与远期利率关系,其中用到连续复利率的即期利率与远期利率关系,公式(公式(3.9) 36 一、支付已知现金收益一、支付已知现金收益I资产远期合约定价资产远期合约定价 (一)(一)问题问题:: 远远期期合合约约的的情情况况::多多头头持持有有t t签签约约,,T T到到期期的的远远期期合合约约,,必必须须在在T T以以价价格格K K买买入入1 1单单位位标标的的物物设设合合约多头价值为约多头价值为f f 标标的的物物情情况况::在在t t到到T T的的期期间间内内,,从从标标的的获获得得收收益益,,该该收收益益用用无无风风险险利利率率r r折折现现到到t t,,其其金金额额为为I I (例如股票分红、债券派息、黄金存储费等例如股票分红、债券派息、黄金存储费等) ) 求:求:((1 1))f=f=?? ((2 2)远期价格)远期价格F=F=?? (二)用复制技术和无套利定价方法求解问题(二)用复制技术和无套利定价方法求解问题 组合组合A A:: 一份远期合约多头(价值为一份远期合约多头(价值为f f))+ +现金现金KeKe-r-r((T-tT-t));; 组合组合B B:一单位标的:一单位标的+ +一笔负债(其现值为一笔负债(其现值为I I)) 比较两个组合比较两个组合:: 在在T T时时,,A A的的结结果果是是获获1 1单单位位标标的的资资产产;;而而B B从从标标的的资资产产获获得得收收益益刚刚好好用用来来偿偿还还负负债债的的本本息息。

      所所以以,,在在T T时时,,组组合合A A价价值值= =组合组合B B价值,价值,A A复制了复制了B B  在在t t时,组合时,组合A A价值价值= =组合组合B B价值即:价值即: f+Kef+Ke-r-r((T-tT-t))=S-I=S-I另外处理:另外处理:1 1、取新资产=资产有收益资产-资产收益、取新资产=资产有收益资产-资产收益; ;2 2、用、用S-IS-I代替(一)的代替(一)的S.S. (三)结果(三)结果 1 1、有现金、有现金I I收益资产的远期合约价值公式收益资产的远期合约价值公式:: f=S-I-Kef=S-I-Ke-r-r((T-tT-t)) 意意义义::有有现现金金I I收收益益资资产产的的远远期期合合约约多多头头价价值值等等于于标标的的资资产产现现货货价价格格扣扣除除I I后后的的余余额额与与交交割割价价格格现现值之差 2 2、有现金、有现金I I收益资产的远期价格公式:收益资产的远期价格公式: F=(S-I)eF=(S-I)er r((T T--t t)) 意意义义::有有现现金金I I收收益益资资产产的的远远期期价价格格等等于于标标的的资资产价格与产价格与I I差额的终值。

      差额的终值 例例3.53.5 设黄金的现价为每盎司设黄金的现价为每盎司450450美元美元, ,其储存成本为每年其储存成本为每年每盎司每盎司2 2美元,在年底支付美元,在年底支付, ,无风险利率为无风险利率为7%7%求一年期的黄金远期价格一年期的黄金远期价格 解:黄金在合约期内收益的现值为解:黄金在合约期内收益的现值为 注意这里注意这里I I为负值为负值 美美元元/ /盎司盎司 所以所求远期价格为所以所求远期价格为 美元美元/ /盎司盎司 43 一、支付已知收益率一、支付已知收益率q资产远期合约定价资产远期合约定价(一)(一)问题问题:: 远远期期合合约约的的情情况况::多多头头持持有有t t签签约约,,T T到到期期的的远远期期合合约约,,必必须须在在T T以以价价格格K K买买入入1 1单单位位标标的的物。

      设合约多头价值为物设合约多头价值为f f 标标的的物物情情况况::在在t t到到T T的的期期间间内内,,从从标标的的物物按收益率按收益率q q获得收益获得收益 求求:: ((1 1))f=f=?? ((2 2)远期价格)远期价格F=F=?? (二)用复制技术和无套利定价方法求解问题(二)用复制技术和无套利定价方法求解问题 组合组合A A:: 一份远期合约多头(价值为一份远期合约多头(价值为f f))+ +现金现金KeKe-r-r((T-tT-t) 现考虑复制组合现考虑复制组合B B,到,到T T时与时与A A等效 到到终终点点T T时时,,组组合合B B持持有有1 1单单位位标标的的,,但但由由于于途途中中标标的的按按收收益益率率q q获获得得收收益益,,收收益益还还可可再再投投资资,,问问在在起起点点t t时应持有多少个单位标的资产?时应持有多少个单位标的资产? 组合组合B B:: e e-q-q((T-tT-t))单位标的单位标的+ +利息收入再投资于该资产。

      利息收入再投资于该资产 比较两个组合比较两个组合:: 在在T T时,组合时,组合A A价值价值= =组合组合B B价值,价值,A A复制了复制了B B  在在t t时,组合时,组合A A价值价值= =组合组合B B价值,价值, 根据无套利原理即:根据无套利原理即: f+Kef+Ke-r-r((T-tT-t))= Se= Se-q-q((T-tT-t)) (三)结果(三)结果 1 1、有收益率、有收益率q q收益资产的远期价值公式收益资产的远期价值公式:: f= Sef= Se-q-q((T-tT-t))-Ke-Ke-r-r((T-tT-t)) 2 2、有收益率、有收益率q q收益资产的远期价格公式:收益资产的远期价格公式: F=SeF=Se((r-qr-q)()(T T--t t)) 这一公式在确定远期外汇价格时起重要作用这一公式在确定远期外汇价格时起重要作用另外处理:另外处理:1 1、取新资产=资产有收益资产、取新资产=资产有收益资产* *Exp(-q(T-t))Exp(-q(T-t))2 2、用、用S* Exp(-q(T-t)) S* Exp(-q(T-t)) 代替(一)的代替(一)的S.S. 当当无无风风险险利利率率r r按按一一年年派派息息一一次次的的复复利利计计算算,,且且T-tT-t不超不超1 1年时:年时: 1 1、有收益率、有收益率q q收益资产的远期价值公式:收益资产的远期价值公式: f=S/[1+qf=S/[1+q((T-tT-t))] ]--K/[1+rK/[1+r((T-tT-t))] ] 2 2、有收益率、有收益率q q收益资产的远期价格公式:收益资产的远期价格公式: F=S[1+rF=S[1+r((T-tT-t))]/[1+ q]/[1+ q((T-tT-t))] ] 例例: :外汇远期定价外汇远期定价 外汇远期的标的资产是外汇,它是按外汇利外汇远期的标的资产是外汇,它是按外汇利率率rf获得收益的。

      获得收益的 1、当利率按连续复利率计算时,远期汇率、当利率按连续复利率计算时,远期汇率(期货汇率)公式:(期货汇率)公式: 这就是国际金融领域著名的利率平价关系这就是国际金融领域著名的利率平价关系它表明,若外汇的利率它表明,若外汇的利率rf大于本国利率大于本国利率r,则该外,则该外汇的远期和期货汇率汇的远期和期货汇率F应小于现货汇率应小于现货汇率S;若外汇;若外汇的利率的利率rf小于本国的利率小于本国的利率r ,则该外汇的远期和期,则该外汇的远期和期货汇率货汇率F应大于现货汇率应大于现货汇率S 2、当利率按一年派息一次的复利计算,且、当利率按一年派息一次的复利计算,且T-t不超不超1年时,远期汇率(期货汇率)公式:年时,远期汇率(期货汇率)公式: F=S[1+r((T-t))]/[1+rf((T-t))]或或 F=S[1+rD/B1]/[1+ rfD/B2] 其中,其中,S是即期汇率(按正指标表示,即:是即期汇率(按正指标表示,即:本币本币/外币),外币),r是本币利率,是本币利率, rf是外币利率,是外币利率,D是合约天数,是合约天数,B1是本币是本币1年计息天数,年计息天数, B2是是外币外币1年计息天数。

      年计息天数 作业:作业:P62 第第1题,第题,第4题题 52 。

      点击阅读更多内容
      相关文档
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.