好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

高等数学上册课件D5_5反常积分审敛法.ppt

22页
  • 卖家[上传人]:au****y
  • 文档编号:54110455
  • 上传时间:2018-09-07
  • 文档格式:PPT
  • 文档大小:540KB
  • / 22 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 二、无界函数反常积分的审敛法,,第五节,反常积分,,无穷限的反常积分,无界函数的反常积分,一、无穷限反常积分的审敛法,机动 目录 上页 下页 返回 结束,反常积分的审敛法,函数,第五章,一、无穷限反常积分的审敛法,定理1.,若函数,机动 目录 上页 下页 返回 结束,证:,根据极限收敛准则知,存在 ,,定理2 . (比较审敛原理),且对充,, 则,机动 目录 上页 下页 返回 结束,,,证: 不失一般性 ,,因此,单调递增有上界函数 ,,机动 目录 上页 下页 返回 结束,说明: 已知,,得下列比较审敛法.,极限存在 ,,定理3. (比较审敛法 1),机动 目录 上页 下页 返回 结束,例1. 判别反常积分,解:,的敛散性 .,机动 目录 上页 下页 返回 结束,由比较审敛法 1 可知原积分收敛 .,思考题: 讨论反常积分,的敛散性 .,提示: 当 x≥1 时, 利用,可知原积分发散 .,定理4. (极限审敛法1),机动 目录 上页 下页 返回 结束,则有:,1) 当,2) 当,证:,根据极限定义 ,,对取定的,当 x 充,分大时, 必有,, 即,满足,当,机动 目录 上页 下页 返回 结束,可取,必有,即,注意:,此极限的大小刻画了,例2. 判别反常积分,的敛散性 .,解:,机动 目录 上页 下页 返回 结束,根据极限审敛法 1 , 该积分收敛 .,例3. 判别反常积分,的敛散性 .,解:,根据极限审敛法 1 , 该积分发散 .,定理5.,机动 目录 上页 下页 返回 结束,证:,则,而,定义. 设反常积分,机动 目录 上页 下页 返回 结束,则称,绝对收敛 ;,则称,条件收敛 .,例4. 判断反常积分,的敛散性 .,解:,根据比,较审敛原理知,故由定理5知所,给积分收敛,(绝对收敛) .,无界函数的反常积分可转化为无穷限的反常积分.,二、无界函数反常积分的审敛法,机动 目录 上页 下页 返回 结束,由定义,例如,因此无穷限反常积分的审敛法完全可平移到无界函数,的反常积分中来 .,定理6. (比较审敛法 2),定理3 目录 上页 下页 返回 结束,瑕点 ,,有,有,利用,,有类似定理 3 与定理 4 的如下审敛法.,使对一切充分接近 a 的 x ( x a) .,定理7. (极限审敛法2),定理4 目录 上页 下页 返回 结束,则有:,1) 当,2) 当,例5. 判别反常积分,解:,利用洛必达法则得,根据极限审敛法2 , 所给积分发散 .,例6. 判定椭圆积分,定理4 目录 上页 下页 返回 结束,散性 .,解:,由于,的敛,根据极限审敛法 2 , 椭圆积分收敛 .,类似定理5, 有下列结论:,机动 目录 上页 下页 返回 结束,例7. 判别反常积分,的敛散性 .,解:,称为绝对收敛 .,故对充分小,从而,据比较审敛法2, 所给积分绝对收敛 .,则反常积分,三、 函数,1. 定义,机动 目录 上页 下页 返回 结束,下面证明这个特殊函数在,内收敛 .,令,机动 目录 上页 下页 返回 结束,综上所述 ,,2. 性质,(1) 递推公式,机动 目录 上页 下页 返回 结束,证:,(分部积分),注意到:,(2),机动 目录 上页 下页 返回 结束,证:,(3) 余元公式:,(证明略),(4),机动 目录 上页 下页 返回 结束,得应用中常见的积分,这表明左端的积分可用  函数来计算.,例如,,内容小结,1. 两类反常积分的比较审敛法和极限审敛法 .,2. 若在同一积分式中出现两类反常积分,,习题课 目录 上页 下页 返回 结束,可通过分项,使每一项只含一种类型的反常积分,,只有各项都收敛时,,才可保证给定的积分收敛 .,3.  函数的定义及性质 .,思考与练习,P263 题1 (1), (2), (6), (7),P264 题5 (1), (2),作业 P263 1 (3), (4), (5), (8) 2 ; 3,。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.