
河北保定曲阳县2024-2025学年数学九年级第一学期开学经典试题【含答案】.doc
20页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………河北保定曲阳县2024-2025学年数学九年级第一学期开学经典试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)不能判定四边形ABCD为平行四边形的题设是( )A.AB=CD,AB∥CD B.∠A=∠C,∠B=∠D C.AB=AD,BC=CD D.AB=CD,AD=BC2、(4分)三个连续自然数的和小于15,这样的自然数组共有( )A.6组 B.5组 C.4组 D.3组3、(4分)如图,△ABC中,∠ C=900,∠CAB=600,AD平分∠BAC,点D到AB的距离DE=3cm,则BC等于( )A.3cm B.6cm C.9cm D.12cm4、(4分)下列叙述,错误的是( )A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直平分的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线相等的四边形是矩形5、(4分)函数的图像经过A(3,4)和点B(2,7),则函数表达式为( )A. B. C. D.6、(4分)化简的结果为( )A.﹣ B.﹣y C. D.7、(4分)某商品的标价比成本价高m%,现根据市场需要,该商品需降价n%岀售.为了使获利不低于10%,n应满足( )A. B.C. D.8、(4分)如图,矩形ABCD中,AC与BD交于点O,若,,则对角线AC的长为( )A.5 B.7.5 C.10 D.15二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若=3-x,则x的取值范围是__________.10、(4分)矩形ABCD中,对角线AC、BD交于点O,于,若,,则____.11、(4分)一次函数y=(2m-6)x+5中,y随x的增大而减小,则m的取值范围是 ________.12、(4分)若一组数据1,2,3,x,0,3,2的众数是3,则这组数据的中位数是_____.13、(4分)若二次根式有意义,则x的取值范围是________.三、解答题(本大题共5个小题,共48分)14、(12分)先阅读材料:分解因式:.解:令,则所以.材料中的解题过程用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你运用这种思想方法解答下列问题:(1)分解因式:__________;(2)分解因式:;(3)证明:若为正整数,则式子的值一定是某个整数的平方.15、(8分)全国两会民生话题成为社会焦点.合肥市记者为了了解百姓“两会民生话题”的聚焦点,随机调查了合肥市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.组别焦点话题频数(人数)A食品安全80B教育医疗mC就业养老nD生态环保120E其他60请根据图表中提供的信息解答下列问题:(1)填空:m= ,n= .扇形统计图中E组所占的百分比为 %;(2)合肥市人口现有750万人,请你估计其中关注D组话题的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?16、(8分)随着新能源汽车推广力度加大,产业快速发展,越来越多的消费者接受并购买新能源汽车。
我市某品牌新能源汽车经销商1月至3月份统计,该品牌汽车1月份销售150辆,3月份销售216辆.(1)求该品牌新能源汽车销售量的月均增长率;(2)若该品牌新能源汽车的进价为52000元,售价为58000元,则该经销商1月至3月份共盈利多少元?17、(10分)某服装店进货一批甲、乙两种款型的时尚T恤衫,甲种款型共花了 10400 元,乙种款型共花了6400元,甲种款型的进货件数是乙种款型进货件数的2倍,甲种款型每件的进货价比乙种款型每件的进货价少30元.商店将这两种T恤衫分别按进货价提高60%后进行标价销售,销售一段时间后,甲种款型全部售完,乙种款型剩余一半.商店对剩下的乙种款型T恤衫按标价的五折进行降价销售,很快全部售完.(1)甲、乙两种款型的T恤衫各进货多少件?(2)求该商店售完这批T恤衫共获利多少元?(获利=销售收入-进货成本)18、(10分)如图,在平面直角坐标系中,直线: 分别与x轴、y轴交于点B、C,且与直线:交于点A.分别求出点A、B、C的坐标;直接写出关于x的不等式的解集;若D是线段OA上的点,且的面积为12,求直线CD的函数表达式.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,将矩形纸片ABCD沿直线AF翻折,使点B恰好落在CD边的中点E处,点F在BC边上,若CD=6,则AD=__________.20、(4分)若代数式在实数范围内有意义,则实数x的取值范围是______.21、(4分)已知P1(-4,y1)、P2(1,y2)是一次函数y=-3x+1图象上的两个点,则y1_______y2(填>,<或=)22、(4分)已知函数y=(k-1)x|k|是正比例函数,则k=________23、(4分)直角中,,、、分别为、、的中点,已知,则________.二、解答题(本大题共3个小题,共30分)24、(8分)某公园有海盗船、摩天轮、碰碰车三个娱乐项目,现要在公园内建一个售票中心,使三个娱乐项目所处位置到售票中心的距离相等,请在图中确定售票中心的位置.25、(10分)分解因式:(1); (2).26、(12分)如图,△ABC是等边三角形.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC的中点M.②连接BM,并延长到D,使MD=MB,连接AD,CD.(2)求证(1)中所作的四边形ABCD是菱形.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】A. ∵AB=CD,AB∥CD,∴四边形ABCD为平行四边形(一组对边平行且相等的四边形是平行四边形);本选项能判定四边形ABCD为平行四边形;B. ∵∠A=∠C,∠B=∠D,∴四边形ABCD为平行四边形(两组对角分别相等的四边形是平行四边形);本选项能判定四边形ABCD为平行四边形;C. 由AB=AD,BC=CD,不能判定四边形ABCD为平行四边形;D. ∵AB=CD,AD=BC,∴四边形ABCD为平行四边形(两组对边分别相等的四边形是平行四边形);本选项能判定四边形ABCD为平行四边形故选C.本题考查平行四边形的判定.2、C【解析】解:设这三个连续自然数为:x-1,x,x+1,则0<x-1+x+x+1<15,即0<3x<15,∴0<x<5,因此x=1,2,3,1.共有1组.故应选C.3、C【解析】根据直角三角形两锐角互余求出∠B=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2DE,根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据BC=BD+CD计算即可得解.【详解】解:∵∠C=90°,∠CAB=60°,∴∠B=90°-60°=30°,∵DE⊥AB,∴BD=2DE=2×3=6cm,∵AD平分∠BAC,∠C=90°,DE⊥B,∴CD=DE=3cm,∴BC=BD+CD=6+3=9cm.故选:C.本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形两锐角互余的性质以及直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质并准确识图是解题的关键.4、D【解析】根据菱形的判定方法,矩形的判定方法,正方形的判定方法,平行四边形的判定方法分别分析即可得出答案.【详解】解:A、根据对角线互相垂直的平行四边形可判定为菱形,再有对角线且相等可判定为正方形,此选项正确,不符合题意;B、根据菱形的判定方法可得对角线互相垂直平分的四边形是菱形正确,此选项正确,不符合题意;C、对角线互相平分的四边形是平行四边形是判断平行四边形的重要方法之一,此选项正确,不符合题意;D、根据矩形的判定方法:对角线互相平分且相等的四边形是矩形,因此只有对角线相等的四边形不能判定是矩形,此选项错误,符合题意; 选:D.此题主要考查了菱形,矩形,正方形,平行四边形的判定,关键是需要同学们准确把握矩形、菱形正方形以及平行四边形的判定定理之间的区别与联系.5、B【解析】利用待定系数法即可求解.【详解】把A(3,4)和点B(2,7)代入解析式得,解得故解析式为故选B.此题主要考查一次函数解析式的求解,解题的关键是熟知待定系数法确定函数关系式.6、D【解析】先因式分解,再约分即可得.【详解】故选D.本题主要考查约分,由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.7、B【解析】根据利润=售价-进价,列出出不等式,求解即可.【详解】设成本为a元,由题意可得: 则 去括号得: 整理得: 故.故选B.考查一元一次不等式的应用,熟练掌握利润=售价-进价是列不等式求解的关键.8、C【解析】分析:根据矩形对角线的性质可推出△ABO为等边三角形.已知AB=5,易求AC的长.详解:∵四边形ABCD是矩形,∴AC=BD. ∵AO=AC,BO=BD,∴AO=BO. 又∵∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=5,∴AC=2AO=1. 故选C.点睛:本题考查的是矩形的性质以及等边三角形的判定和性质,熟记矩形的各种性质是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】试题解析:∵=3﹣x,∴x-3≤0,解得:x≤3,10、1或【解析】试题解析:如图(一)所示,AB是矩形较短边时,∵矩形ABCD,∴OA=OD=BD;∵OE:ED=1:3,∴可设OE=x,ED=3x,则OD=2x∵AE⊥BD,AE=,∴在Rt△OEA中,x2+()2=(2x)2,∴x=1∴BD=1.当AB是矩形较长边时,如图(二)所示,∵OE:ED=1:3,∴设OE=x,则ED=3x,∵OA=OD,∴OA=1x,在Rt△AOE中,x2+()2=(1x)2,∴x=,∴BD=8x=8×=.综上,BD的长为1或.11、m<1【解析】解:∵y随x增大而减小,∴k<0,∴2m-6<0,∴m<1.12、1【解析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.【详解】解:∵1,1,3,x,0,3,1的众数是3,∴x=3,先对这组数据按从小到大的顺序重新排序0,1,1,1,3,3,3,位于最中间的数是1,∴这组数的中位数是1.。












