
微波技术基础电子科大第1次课.ppt
60页微波技术基础詹铭周詹铭周 副教授副教授mzzhan@ 科研楼 B区336考核规则•最终成绩 = 期末成绩(100分)*80% +平时成绩(100分)*20%•平时成绩:点名 (随机)+ 作业(5次,每次10分,周一布置,下一个周三交•课件:课后一周之类,上传到•basis_of_mwt@第1课•绪论P1~P5•内容:•1、微波的定义(频率或波长的范围频率或波长的范围);•2、微波频段的划分(波段代号波段代号);•3、微波的特性特性;•4、微波的应用应用;•5、微波辐射的危害与标准;•6、微波技术基础关注的内容微波技术基础关注的内容1、微波的定义•定义:波长在1m ~ 0.1mm的电磁波,对应频率范围为300MHz ~ 3000GHz•波段细分:•分米波: 300MHz~3GHz, 1m~10cm•厘米波: 3GHz~30GHz, 10cm~1cm•毫米波: 30GHz~300GHz, 1cm~1mm•太赫兹波太赫兹波:300GHz~3THz, 1mm~0.1mm电磁频谱分布图2、微波波段划分•源于第二次世界大战期间,为了保密和描述方便,用大写英文字母表示工作雷达的工作波段雷达的工作波段。
•德国标准、德国标准、美国标准美国标准和欧洲标准和欧洲标准•中国有自己的雷达波段标准,而且不同于其他国家的划分,似乎是界于美国与德国的标准之间波段类型波长[cm] 频率[GHz]A米波 <0.25B米波 0.25-0.5C分米波30-600.5-1D分米波15-301-2E分米波30-602-3F分米波15-303-4G分米波7.5-154-6H厘米波4-56-8I厘米波3-48-10J厘米波1.5-310-20K厘米波0.75-1.520-40L毫米波0.5-0.7540-60M毫米波0.3-0.560-100欧洲新标准下的部分波段表欧洲新标准下的部分波段表 波段代号标称波长[cm]频率范围[GHz]波长范围[cm]L221-230-15S102-415-7.5C54-87.5-3.75X38-123.75-2.5Ku212-182.5-1.67K1.2518-271.67-1.11Ka0.827-401.11-0.75U0.640-600.75-0.5V0.460-800.5-0.375W0.380-1000.375-0.3我国现用微波分波段代号我国现用微波分波段代号BandFrequency RangeOrigin of NameP 250 to 1000 MHz 由于最早的雷达使用的是米波,这一波段被称为P波段(P为Previous的缩写,即英语“以往”的字头)。
L 1 to 2 GHz 最早用于搜索雷达的电磁波波长为23cm,这一波段被定义为L波段(英语Long的字头),后来这一波段的中心波长变为22cmS 2 to 4 GHz 当波长为10cm的电磁波被使用后,其波段被定义为S波段(英语Short的字头,意为比原有波长短的电磁波) 短波通信的“短” (3-30MHz).C 4 to 8 GHz 为了结合X波段和S波段的优点,逐渐出现了使用中心波长为5cm的雷达,该波段被称为C波段(C即Compromise,英语“结合”一词的字头)X 8 to 12 GHz 在主要使用3cm电磁波的火控雷达出现后,3cm波长的电磁波被称为X波段,因为X代表座标上的某点Ku 12 to 18 GHz Ku for “kurz-under”. 避开吸收峰K 18 to 26 GHz 在英国人之后,德国人也开始独立开发自己的雷达,他们选择1.5cm作为自己雷达的中心波长这一波长的电磁波就被称为K波段(K = Kurtz,德语中“短”的字头)不幸”的是,德国人以其日尔曼民族特有的“精确性”选择的波长可以被水蒸气强烈吸收Ka 26 to 40GHz Ka for “kurz-above”. 避开吸收峰。
Q30 to 50 GHzU40 to 60GHzV 50 to 75 GHz V for "very" high frequency band (not to be confused with VHF)E60 to 90 GHzW 75 to 110 GHz W follows V in the alphabet F110 to 140 GHzG140 to 220 GHzD110 to 170 GHzR220 to 325 GHz家用电器也有“波段”•无线电通信与广播(频道)•电视频道•无线电委员会已经将有限的频率资源划分了各自的应用领域以免系统之间的相互干扰•各频段典型的应用如下表所示SystemFrequency rangeRFID systems125 to 134 kHz 13.56 MHz UHF (400 to 930 MHz) 2.45 GHz 5.8 GHzAM radio (United States)535 kHz to 1.7 MHzShort wave radio5.9 to 26.1 MHzCitizen's band (CB) radio (40 channels)26.96 to 27.41 MHzRadio controlled airplanes27.255 MHz (shared with CB channel 23)Broadcast television channels 2-654 to 88 MHzFM radio88 to 108 MHzBroadcast television, channels 7-13174 to 220 MHzGarage door openers, alarms~40 MHzCordless analog phones40-50 MHzBaby monitors49 MHzSystemFrequency rangeRadio controlled airplanes~72 MHzRadio controlled cars~75 MHzRemote keyless entry (RKE) systems, tire pressure monitoring systems (TPMS)315 or 433 MHzRFID UHF433 MHzUHF television (channels 14-83)470 to 890 MHzWildlife tracking collars, bank money dye packs not a frequency you want to transmit...215 to 220 MHzPersonal Locator Beacons and other emergency beacons. 406 MHzCordless phones 864 to 868 MHz 944 to 948 MHzIndustrial, medical & scientific (ISM) band Europe including RFID866-870MHzCell phones (GSM)824 to 960 MHzSystemFrequency rangeIndustrial, medical & scientific (ISM) band United States including RFID902 to 928 MHzAir traffic control radar960 to 1215 MHzGlobal positioning system (GPS)1227.6 MHz (L2 band, 20 MHz wide) 1575.42 MHz (L1 band, 20 MHz wide)Globalstar satellite phone downlinkGlobalstar satellite phone uplink1610 to 1625 MHz 2484 to 2499 MHzCell phones (GSM)1710 to 1990 MHzDigital cordless phones1880 to 1900 MHzPersonal handy phone system (PHS) 1895 to 1918 MHzDeep space radio communications: 2290 to 2300 MHz,ku/W-bandIndustrial, medical & scientific (ISM) band2400 to 2483.5 MHzShared wireless data protocols (Bluetooth, 802.11b):2402 to 2495 MHzMicrowave ovens2450 MHzSystemFrequency rangeSatellite radio downlinkXM Satellite Sirius Satellite2330 to 2345 MHz2332.50 to 2,345.00 MHz 2320.00 to 2,332.50 MHzClear (Sprint) 4G2.5 to 2.6 GHzRadio altimeters4.2 to 4.4 GHz802.11a wireless local area network (WLAN)5.15 to 5.25 GHz (lower band)5.25 to 5.35 GHz (middle band)5.725 to 5.825 (upper band)Industrial, medical & scientific (ISM) band5.725 to 5.85 GHzSatellite radio uplink7.050 to 7.075 GHzPolice radar10.525 GHz (X-band)24.150 (K-band)33.4 to 36 GHz (Ka-band)Direct broadcast satellite TV downlink (Europe)11.7 to 12.5 GHzDirect broadcast satellite TV downlink (US)for example, Echostar's Dish Network12.2 to 12.7 GHzSystemFrequency rangeSatellite Transmission uplink (news trucks, etc) in United States (thanks Chris!)14-14.5 GHzAutomotive radar, distance sensors24 GHzUnlicensed wireless GigaBit, ("WiGig", aportmanteau). Gibabit Wireless Alliance is covered by IEEE802.11ac standard.57 to 64 GHzAutomotive radar, adaptive cruise control76 to 77 GHzE-band (new FCC-approved ultra-high speed data communications band)71 to 76 GHz, 81 to 86 GHz and 92 to 95 GHz防撞雷达,导引雷达,机场跑道异物监测防撞雷达,导引雷达,机场跑道异物监测94 GHz机场安检,高速通信,生物检测机场安检,高速通信,生物检测THz1.1 Microwave frequencies15•The field of radio frequency (RF) and microwave engineering generally covers the behavior of alternating current signals with frequencies in the range of 30 MHz to 3000 GHz. •RF frequencies range from very high frequency (VHF) (30–300 MHz) to ultra high frequency (UHF) (300–3000 MHz), while the term microwave is typically used for frequencies between 0.3 and 300 GHz, with a corresponding electrical wavelength between λ = c/ f = 10 cm and λ = 1 mm, respectively. •Signals with wavelengths on the order of millimeters are often referred to as millimeter waves (30-300GHz), while Terahertz waves ranges from 0.3 to 3THz.16•Because of the high frequencies (and short wavelengths), standard circuit theory often cannot be used directly to solve microwave network problems. In a sense, standard circuit theory is an approximation, or special case, of the broader theory of electromagnetics as described by Maxwell’s equations.• •Microwave components often act as distributed elements, where the phase of the voltage or current changes significantly over the physical extent of the device because because the the device device dimensions dimensions are are on on the the order order of of the the electrical electrical wavelengthwavelength. 微波频段17•At much lower frequencies the wavelength is large enough that there is insignificant phase variation across the dimensions of a component. •The other extreme of frequency can be identified as optical engineering, in which the wavelength is much shorter than the dimensions of the component. 微波频段18•In RF and microwave engineering, then, one must often work with Maxwell’s equations and their solutions. •It is in the nature of these equations that mathematical complexity arises since Maxwell’s equations involve vector differential or integral operations on vector field quantities, and these fields are functions of spatial coordinates. 微波频段19•A field theory solution generally provides a complete description of the electromagnetic field at every point in space, which is usually much more information than we need for most practical purposes.(场解法)• We are typically more interested in terminal quantities such as power, impedance, voltage, and current, which can often be expressed in terms of these extended circuit theory concepts. It is this complexity that adds to the challenge, as well as the rewards, of microwave engineering. (等效电路解法)发展历史简介发展历史简介20•Microwave engineering is often considered a fairly mature discipline because the fundamental concepts were developed more than 50 years ago, and probably because radar, the first major application of microwave technology, was intensively developed as far back as World War II. •However, recent years have brought substantial and continuing developments in high-frequency solid-state devices, microwave integrated circuits, and computer-aided design techniques, and the ever-widening applications of RF and microwave technology to wireless communications, networking, sensing, and security have kept the field active and vibrant. 发展历史简介21•The foundations of modern electromagnetic theory were formulated in 1873 by James Clerk Maxwell, who hypothesized, solely from mathematical considerations, electromagnetic wave propagation and the idea that light was a form of electromagnetic energy. Maxwell’s formulation was cast in its modern form by Oliver Heaviside during the period from 1885 to 1887. Heaviside was a reclusive genius whose efforts removed many of the mathematical complexities of Maxwell’s theory, introduced vector notation, and provided a foundation for practical applications of guided waves and transmission lines. (理论)•Heinrich Hertz, a German professor of physics and a gifted experimentalist who understood the theory published by Maxwell, carried out a set of experiments during the period 1887–1891 that validated Maxwell’s theory of electromagnetic waves. (实验)发展历史简介22•Because of the lack of reliable microwave sources and other components, the rapid growth of radio technology in the early 1900s occurred primarily in the HF to VHF range. It was not until the 1940s and the advent of radar development during World War II that microwave theory and technology received substantial interest. (应用)•In the United States, the Radiation Laboratory was established at the Massachusetts Institute of Technology to develop radar theory and practice. A number of talented scientists, including N. Marcuvitz, I. I. Rabi, J. S. Schwinger, H. A. Bethe, E. M. Purcell, C. G. Montgomery, and R. H. Dicke, among others, gathered for a very intensive period of development in the microwave field. (完善理论,系统化研究)发展历史简介23lCommunications systems using microwave technology began to be developed soon after the birth of radar, benefiting from much of the work that was originally done for radar systems. (应用爆发)lThe advantages offered by microwave systems, including wide bandwidths and line-of-sight propagation, have proved to be critical for both terrestrial and satellite communications systems and have thus provided an impetus for the continuing development of low-cost miniaturized microwave components. 微波的特性•微波和低频的无线电波、可见的和不可见的光波、X 射线、γ 射线一样,本质上都是随时间和空间变本质上都是随时间和空间变化的、呈波动状态的电磁波。
化的、呈波动状态的电磁波尽管它们的表现各不相同,例如可见光可以被人眼所感觉而其他波段则不能;X 射线、γ 射线具有穿透导体的能力而其他波段则不具有这种能力;无线电波可以穿又透浓又厚的云雾而光波则不能等,但它们都是电磁波之所以出现这么多不同的表现,归根结底归根结底是因为它们的频率不同是因为它们的频率不同即波长不同微波的特性•1)似光性和似声性)似光性和似声性•1.1 似光性:似光性:当微波照射到某些电大物体电大物体上时,将产生显著的反射和折射反射和折射,就和光线的反、折射一样同时微波传播的特性也和几何光学相似,能像光线一样地直线传播和容易集中,即具有似光性这样利用微波就可以获得方向性好、体积小的天线设备,用于接收地面上或宇宙空间中各种物体反射回来的微弱信号,从而确定该物体的方位和距离,这就是雷达导航技术的基础•1.2 似声性似声性•微波的波长与物体的尺寸具有相同的量级,使得微波的特点又与声波相近,具有绕射绕射和散射和散射现象,即似声性•如微波波导喇叭类似与声学的传声筒•如微波波导喇叭天线类似于声学喇叭•2)穿透性)穿透性•微波照射于物体物体时,能深入该物体内部的特性称为穿透性2.1 微波能穿透电离层;微波是射频波谱中惟一能穿透电离层的电磁波(除光波外),探测外层空间的“宇宙窗口”。
穿透电离层——深空探测•The Atacama Large Millimeter/submillimeter Array (ALMA), an international partnership of Europe, North America and East Asia in cooperation with the Republic of Chile, is the largest astronomical project in existence. ALMA will be a single telescope of revolutionary design, composed initially of 66 high precision antennas located on the Chajnantor plateau, 5000 meters altitude in northern Chile.2.2 穿透云、雨、植被、积雪、烟尘和地表层; 全天候、全天时工作能力,遥感技术的重要波段2.3 穿透生物体;微波能穿透生物体,成为医学检测和透热疗法的重要手段;2.4 穿透等离子体再入远程导弹和航天器重返大气层时实现通信和末端制导的重要手段。
再入远程导弹速度可达12000km/h,弹体外表高温,空气电离化3)非电离性(非离子化辐射)•微波的量子能量量子能量不够大,因而不会改变物质分子的内部结构或破坏其分子的化学键,所以微波和物体之间的作用是非电离的•而由物理学可知,分子、原子和原子核在外加电磁场的周期力作用下所呈现的许多共振现象都发生在微波范围,因此微波为探索物质的内部结构和基本特性提供了有效的研究手段•最受关注的是电磁辐射的生物效应•离子化辐射会破坏分子结构;•非离子化辐射仅有加热作用,使分子运动紫外线以上紫外线以上3、非电离性(非离子化辐射)•电磁波能量的载体是光子•频率越高,光子的能量就越大当光子能量高到足够使被照射物质的电子发生跃迁时,称为离子化辐射•比如,工作在2.45GHz的微波炉,工作时,每个光子的能量为0.00001eV,仅是离子化辐射所需能量的百万分之一•微波辐射的危害主要在于加热性•日光浴的致癌几率远大于微波辐射•为什么为什么X射线小剂量就会对人造成伤害,而微波要射线小剂量就会对人造成伤害,而微波要大剂量才会?大剂量才会?4)信息性)信息性•微波的频率很高,所以在不太大的相对带宽下,其可用的频带很宽,这意味着微波的信息容量大。
是低频无线电波无法比拟的•————微波技术主要应用之处 !!!•Unlicensed wireless GigaBit, ("WiGig", aportmanteau). Gibabit Wireless Alliance is covered by IEEE802.11ac standard. 57 to 64 GHz•该频段的开发是目前微波技术的热点之一!•“要实现数Gbps以上速率的唯一方法就是利用毫米波微波的大气吸收特性(海拔)电磁波的大气吸收特性(海平面)微波频段微波频段10GHz以下,大气衰减对微波的影响很小以下,大气衰减对微波的影响很小5)微波的大气传播特性)微波的大气传播特性•5.1 氧气和水蒸气对微波频率会产生选择性的吸收和散射, 在毫米波频段尤为突出;→大气层之外衰减很小•5.2 氧气分子谐振引起的吸收峰出现在60GHz和120GHz附近, 而由水蒸气谐振引起的吸收峰在22GHz和183GHz附近•5.3 四个传播衰减相对较小的“窗口频率”,其中心频率分别在35、94、140和220GHz,相应波长分别为8.6、3.2、2.1和1.4mm; •5.4 随着电磁波的工作频率升高,总的衰减呈上升趋势。
小结•微波的主要特性:微波的主要特性:•似光性和似声性似光性和似声性•穿透性穿透性•非电离性非电离性•信息性信息性•————————————————————•微波的大气传播特性(窗口频率)微波的大气传播特性(窗口频率)这些特性是红外与光这些特性是红外与光波频段的电磁波所不波频段的电磁波所不具备的4、微波的应用(从家中厨房到宇宙太空)•在介绍微波特性的时候,已经随机地介绍了某些典型应用•归纳如下:•微波的应用:•4.1 信息载体传统应用——雷达、通信、导航/定位、遥感、测量、交通管制和目标特性分析等军民用领域•4.2 微波能微波能——强功率和弱功率应用4.1 信息载体•雷达(1930)(包括导弹制导雷达)• 1. 目前95%以上的雷达工作在微波频段——微波雷达;• 2. 微波工作的雷达的优点:可以使用尺寸较小的天线,来获得很窄的波束宽度,以获取关于被测目标性质的更多的信息——幅度、频率、相位、极化、多普勒频率等信息 微波传输用的波导•就雷达波段而言•UHF用于超远程警戒;•L波段用于定位、远程警戒、空中交通管制;•S波段用于中程警戒、机场交通管制、远程气象观测;•C波段用于远程跟踪、机载气象观测;•X波段用于远程跟踪、导弹制导、测绘、机载攻击;•Ku波段用干地形测绘、卫星测高度,汽车防撞;•Ka用于精确制导;•E波段可用于汽车防撞雷达等;•W波段测速、精确制导,机场异物检测等。
4.1 信息载体•通信• 1. 微波具有频率高、频带宽和信息量大的特点;• 2. 应用业务包括:微波多路通信、微波中继通信、散射通信、移动通信、卫星通信和无线局域网等 4.1 信息载体•机场安检美国交通安全实验室主任美国交通安全实验室主任 Susan Hallowell2003年)年)——本土安全本土安全类似系统已装备多机场,已成为必须的安检手段类似系统已装备多机场,已成为必须的安检手段4.2 微波能•高功率应用•微波炉•微波加热的是一些能够吸收微波的吸收性介质,即含有极性分子的介质材料•当有极性分子的介质材料置于微波电磁场中时,介质材料中会形成偶极子或已有的偶极子重新排列,在交变电磁场的作用下,并随着高频交变电磁场以每秒高达数亿次的速度摆动,分子要随着不断变化的高频电场的方向重新排列,就必须克服分子原有的热运动和分子相互间作用的干扰和阻碍,产生类似于摩擦的作用,产生大量的热量由于微波频率高,极性分子摆动速度很快,因此,快速加热是微波加热的突出特点4.2 微波能•高功率•微波能武器•1、用于反恐(见视频)•2、破坏电子设备,瘫痪有生力量•共振——在微波电磁场的作用下,生物体内的一些分子将会产生变形和振动,使细胞膜功能受到影响,使细胞膜内外液体的电状况发生变化,引起生物作用的改变,进而可影响中枢神经系统等——造成永久伤害•制热——在短时间,适当功率下,无永久伤害。
主动拒主动拒止系统止系统4.2 微波能•小功率应用是用于各种电量和非电量(包括长度、速度、湿度、温度等)的测量、•育种、杀毒、干燥谷物/烟草•生物医学应用• 1.利用微波对生物体的热效应,选择性局部加热, 进行治疗例如微波治癌机,主要用于治疗乳腺癌•环境保护专利US 5276924(日本)微波的应用53Huawei Huawei Ascend Mate7 微波的应用545、微波辐射的危害与标准•微波的生物效应还有有害的效应,表现为超剂量的微波照射有三致作用:致癌、致畸和致突变•影响神经、免疫、感觉、内分泌、遗传系统等•这种超剂量一般情况下,在工业环境中工业环境中存在Power levelLong-term effect on human bodyNotes0.01 mW/cm2Nothing 0.1 mW/cm2Nothing 1 mW/cm2Nothing 5 mW/cm2Nothing微波炉泄漏的安全微波炉泄漏的安全标准准10 mW/cm2Nothing长时间暴露在暴露在连续波微波微波波辐射下的安全数射下的安全数值()()30 mW/cm2感感觉到到热 100 mW/cm2造成白内障造成白内障日光浴日光浴1000 mW/cm2痛痛觉 5000 mW/cm2熟熟制作食物!制作食物!微波对人体的辐射影响58•A study of 20,000 radar technicians of the US Navy, who were chronically exposed to high levels of microwave radiation, did not detect increased incidence of cancer. Recent epidemiologic evidence also led to the consensus that exposure to electromagnetic fields, e.g. along power lines, did not raise incidence of leukemia or other cancers.•Safety limits exist for microwave exposure. The U.S. Occupational Safety and Health Administration defines energy density limit for exposure periods of 0.1 hours or more to 10 mW/cm2; for shorter periods the limit is 1 mW-hr/cm2 with limited excursions above 10 mW/cm26、微波技术基础关注的内容重要性:是本专业除“电磁场理论”外最重要的基础课;是后续专业课的基础和出发点。
是后续专业课的基础和出发点•场——电场磁场关系,横纵场关系(第1章)•波导、谐振器(第2,6章)•传输线(第3、4、5章)•圆图(工程化图解工具)•网络参数(S参数)(第7章)•微波基本元器件(第8章)思考题•微波频段与其它频段的本质区别是什么?•微波科学与技术自身的发展是什么?•微波还有哪些应用?。












