
补2有效值、功率等电量的概念.docx
7页补2:有效值、功率等电量的概念 (与第六次课同讲)一、正弦交流电路中各电量的概念1正弦交流电路的电流、电压有效值电流有效值的定义: 所谓有效值是指在效应上(如热效应)与周期量在一个周期内的平均效应相等的直流量当让一个周期电流 i和一个直流电流I分别通过两个等值的电阻 R时,在相同时间T内它们产生的热量分别为如果周期电流与直流电流的发热量相等,则 Wi=W2,由此可以得到1 =j¥[i2(t)dt (1-1)从上式可以看出周期电流的有效值等于它瞬时值的平方在一个周期内的积分的平均值再取平方根,因此又 称有效值为均方根值当周期电流为正弦量时,将正弦电流代入式(1),得其中所以I = J**2 -2 = = 0.707Im ( 1-2)或lm —、21 =1.4141 ( 1-3)同理,正弦电压的有效值为必须强调指出,有效值的计算式(1-1)适用于任意周期量,而有效值等于幅值的 1 .2这一关系仅适用于正弦量在工程上,一般所说的正弦电压、电流的大小都是指有效值例如,交流测量仪表所指示的读数、交流电气设备铭牌上的额定值都是指有效值我国所使用的单相正弦源的电压 U=220V,就是正弦电压的有 效值。
应当指出,并非在一切场合都使用有效值来表征正弦量的大小例如,在确定各种交流电气设备的耐压值时,就是按电压的最大值来考虑的2、正弦交流电路的功率和功率因数2.1瞬时功率:输入任意一端口电路的瞬时功率 p等于端口的电压 u和电流i的乘积,此时端口的电压 u和电流i的参考方向对电路内部关联图1 一端口正弦电流电路如图1所示的一端口电路 N有:p(t) = u(t)i(t)若设正弦交流一端口电路的正弦电压和电流分别为:式中,0 =u-巾为端口上电压与电流的相位差,则在某瞬时输入该正弦稳态一端口电路的瞬时功率为p(t^u(t) i(t)=、、2Ucos(,t)、、2lcos(,t- J (1-4)=Ul〔cos::「J;;'cos(2 ■ t--:) 1由式(1-4)可知:瞬时功率由两部分组成,一部分是恒定分量 Ulcos購另一部分是两倍于电压(或电流)角频率的正弦分量如果把式(4)进一步展开为: p =UI cos (1 cos2 t) Ul sin : sin 2 t (1-5)则瞬时功率分解为两个都随时间变化的部分:一部分是非正弦周期分量 Ulcos 0 (1+cos2 gt它是输入正弦稳态一端口电路的瞬时功率中的不可逆部分,除零值外,它恒大于零,其作用是在正弦稳态一端口电路内部消耗的能量;另一部分是正弦分量 Ulsin 0 sin2 g它是输入正弦稳态一端口电路的瞬时功率中的可逆部分,它在一个周期内正负交替变化两次, 其作用是在正弦稳态一端口电路内部与外部之间周期性交换能量。
由于瞬时功率的实用意义不大,为了充分反映正弦稳态电路中能量转换的情况,下面将介绍一些其他 的功率概念2.2平均功率:平均功率为瞬时功率在一个周期内的平均值由于式(1-4)所示的瞬时功率为周期量,故正弦稳态电路一端口电路的平均功率(1-6)P = * ° p(t)dt =* ° Ul bos ' cos(2 t Idt 二Ul cos由式(6)可见平均功率就是式(1-4)中的恒定分量,也是式(1-5)中不可逆部分的恒定分量,其单 位为瓦(W)式(1-6)表明,正弦稳态一端口电路吸收的平均功率等于端口上电压和电流关联参考方向 下端口上电压的有效值、电流有效值和 cos $的乘积,也就是说平均功率不仅取决于电压有效值、电流有效值的大小,还与电压和电流相位差的余弦有关 cos $称为该二端口网络的功率因数, 而$称为功率因数角($就是电压和电流的相位差角)在电气工程中,平均功率也称为 有功功率2.3无功功率式(1-4)还可以改写为如下形式: p(t) = u(t) i(t) = P(1 cos2,t) Qsin2,t (1-7)式中,第一项为功率的脉动分量,其值总是大于或等于零,它的传输方向总是从电源到负载;第二项之值 为正、负交替变化,则表示在电源和负载间往返交换的功率分量,它的幅值为 Q=UI sin「。
在工程上为了描述电源与负载间的能量往返交换的情况,把 Q定义为无功功率,即:无功功率的单位是乏(var)无功功率可以是正的,也可以是负的当 $ >0时,电压超前于电流(感性电路)时,Q>0,在图1相关联参考方向下, 认为该电路 吸收”无功功率;当$ <0寸,即电压滞后电流(容性电路)时,Q<0,认为该电路 发出"无功功率;当$ =0时,即电压与电流同相位(电阻性电路) ,Q=0,认为该电路即不吸收也不发出无功功率 无功功率就是电源与负载之间往返交换功率的最大值且交换的频率是交流信号的两倍从有功功率和无功功率的概念出发,可以认为 Ucos$、Usin $为电压的有功分量、无功分量; Icos $Isin为电流的有功分量、无功分量2.4视在功率:电路输入端电压与电流有效值的乘积的定义为正弦交流电路的视在功率视在功率用字母S表示,即S = UI (1-8)视在功率的单位是伏安(VA )在电工技术中,视在功率这个概念有其实用意义,电机、变压器等电 气设备的容量就是指的视在功率例如,某大型变压器的容量是 10000kVA,就是说它的额定视在功率是10000kVA,当cos $ =时,这台变压器的输出有功功率时 10000kVA,而当cos $ =0.7时,它的输出有功功 率就是 10000X).75=7500 kVA。
由于S =UI , P =UI cos「, Q =UI sin :,在同一电路的S, P, Q,之间有下列关系:可见,三者之间构成一个直角三角形,叫做 功率三角形在功率三角形中,P是三角形的底边,它的对边,S是它的斜边,S和P之夹角为功率因数角 札如图2所示:图2功率三角形对于同一电路,功率三角形与其阻抗三角形、电压三角形是相似三角形2.5功率因数该式表示电源向负载能够发出的实际功率相对最大功率的折扣提高功率因数最简便的措施是并联电容器并联电容器的容性无功电流能抵消负载的感性无功电流, 使总的无功电流减小,即减小了电压和电流之间的相位差,从而提高了电路的总功率因数提高功率因数的意义:(1)电源利用率提高;(2)负载吸收有功功率大,线路的损耗小2.6复功率的定义正弦交流电路的有功功率、无功功率和视在功率三者之间的关系还可以通过“复功率”表述复功率是一个辅助计算功率的复数,它将正弦稳态电路的三个功率和功率因数统一为一个公式表示它并 没有实际的物理意义复功率的单位是(伏安 VA )注意:正弦交流电路中总的有功功率是电路各部分有功功率之和,总的无功功率是电路各部分无功功率之和,即有功功率和无功功率分别守恒。
电路中的复功率也守恒,但视在功率不守恒二、非正弦交流电路中电量的概念1、非正弦周期交流电路的有效值在第1节中我们介绍过正弦量有效值的概念,其定义可适用于任何周期性信号以周期电流为例,它 的有效值定义式为: 若i(t)为非正弦周期电流,且可以展开成下列傅里叶级数形式:则将上式结果代入有效值定义式,并利用三角函数的正交性,则有:其中lk = Ikm为k次谐波的有效值故非正弦周期电流的有效值为:I - I2「I22 I2 二 Ik2 (2-1)V y同理,非正弦周期电压的有效值为:u「u2 Ui2 U22 U2「52 (2-2)V k4以上两式表明,非正弦周期电流或电压的有效值为其直流分量和各次谐波分量有效值的平方和的平方根在正弦电路中,正弦量的最大值与有效值之间存在 v"2倍的关系;对于非正弦周期信号,其最大值与有效值之间并无此简单关系2、非正弦周期交流电路的平均值在电工技术和电子技术中,为了描述交流电压、电流经过整流后的特性,常采用周期函数 f (t)取绝对值之后的平均值以电流为例有:1 TIav =〒 Ji(t)dt (2-3)按上式可求得正弦交流电流的平均值为:它相当于正弦电流经全波整流后的平均值,这是因为电流取绝对值后相当于把负半周的值变为对应的正 值。
注意:当使用不同类型的电工仪表测量同一个非正弦周期电流或电压时,会得出不同的结果因此在 测量非正弦周期电流和电压时,要注意选择合适的仪表,并注意不同类型仪表的读数表示含义不同3、非正弦周期交流电路的瞬时功率和平均功率若一端口电路的端口电压 u (t)和电流i (t)均为非正弦周期量,其傅里叶级数形式分别为在关联参考方向下,一端口电路吸收的 瞬时功率 如下:qQ "Io \ lkmCOS(k 'it Ik)k4p(t) =u(t)i(t)= [uo 亠二 UkmCOS(k,it 「uk) •IL k^ . ILQO OO(2-4)= UoIo 1(/ UkmCOS(krt uk) Uo' lkmCOS(k,it Ik)k 4 k 4、UkmCOS(k it lk)lkmCOS(k it」k )k 4oO oC一二二 UkmCOS(k 1^ :uk)IqmCOS(q it ■ :iq)k 4 q4其平均功率为:将式(2-4)代入上式进行积分,并利用三角函数的正交性,积分式中的第二、三、五项的积分值为零,平均功率计算式中仅剩下列两项积分:式中UP」TUoIodtT o1 T— ' ' UkmlkmCOS(k,it lk)cos(k ・it Ik )dtT k J q 4■ =1= UoIo ■ ' — u kmI km cos(「uk 7 Ik ) k 2cd二Uolo …二 U kIk COS kkmO0=Po ' &k :—p m(2-5), Ik=卑,®k =(puk —巴k,k = 1,2,。
分别为k次谐波电压有效值、电流有效值和阻抗角2 、2式(2-5 )表明,不同频率的电压与电流只构成瞬时功率,不能构成平均功率,只有同频率的电压与电流才能构成平均功率电路的平均功率等于直流分量和各次谐波分量各自产生的平均功率之和4、视在功率注意:非正弦周期电路的视在功率 S不等于各次谐波 S之和5、功率因数对于非正弦,功率因数通常只出现在工程中6、无功功率:实际无功并无明确的定义(太复杂,不作讨论) 参考文献:[1]李裕能,夏长征.电路.武汉:武汉大学出版社,20046一叶一世界[2] 黄锦安 .电路.北京:机械工业出版社, 2003[3] 邱关源 .电路.第四版.北京:高等教育出版社, 1999[4] 周庭阳,江维澄 . 电路.第二版 .杭州:浙江大学出版社, 199419982001[5] 王兆安,杨君,刘进军 .谐波抑制和无功补偿 .北京:机械工业出版社,[6] 周孝信,韩祯祥 .中国电力百科全书 .第二版 .北京:中国电力出版社,。












