好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

指数函数习题精选精讲.doc_2

7页
  • 卖家[上传人]:F****n
  • 文档编号:101511758
  • 上传时间:2019-09-28
  • 文档格式:DOC
  • 文档大小:614.50KB
  • / 7 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 习题精选精讲指数函数  指数函数是高中数学中的一个基本初等函数,有关指数函数的图象与性质的题目类型较多,同时也是学习后续数学内容的基础和高考考查的重点,本文对此部分题目类型作了初步总结,与大家共同探讨.  1.比较大小  例1 已知函数满足,且,则与的大小关系是_____.  分析:先求的值再比较大小,要注意的取值是否在同一单调区间内.  解:∵,  ∴函数的对称轴是.  故,又,∴.  ∴函数在上递减,在上递增.  若,则,∴;  若,则,∴.  综上可得,即.  评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论.  2.求解有关指数不等式  例2 已知,则x的取值范围是___________.  分析:利用指数函数的单调性求解,注意底数的取值范围.  解:∵,  ∴函数在上是增函数,  ∴,解得.∴x的取值范围是.  评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论.  3.求定义域及值域问题  例3 求函数的定义域和值域.  解:由题意可得,即,  ∴,故. ∴函数的定义域是.  令,则,  又∵,∴. ∴,即.  ∴,即.  ∴函数的值域是.  评注:利用指数函数的单调性求值域时,要注意定义域对它的影响.  4.最值问题  例4 函数在区间上有最大值14,则a的值是_______.  分析:令可将问题转化成二次函数的最值问题,需注意换元后的取值范围.  解:令,则,函数可化为,其对称轴为.  ∴当时,∵,  ∴,即.  ∴当时,.  解得或(舍去);  当时,∵,  ∴,即,  ∴ 时,,  解得或(舍去),∴a的值是3或.  评注:利用指数函数的单调性求最值时注意一些方法的运用,比如:换元法,整体代入等.  5.解指数方程  例5 解方程.  解:原方程可化为,令,上述方程可化为,解得或(舍去),∴,∴,经检验原方程的解是.  评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根.  6.图象变换及应用问题  例6 为了得到函数的图象,可以把函数的图象(  ).  A.向左平移9个单位长度,再向上平移5个单位长度  B.向右平移9个单位长度,再向下平移5个单位长度  C.向左平移2个单位长度,再向上平移5个单位长度  D.向右平移2个单位长度,再向下平移5个单位长度  分析:注意先将函数转化为,再利用图象的平移规律进行判断.  解:∵,∴把函数的图象向左平移2个单位长度,再向上平移5个单位长度,可得到函数的图象,故选(C).  评注:用函数图象解决问题是中学数学的重要方法,利用其直观性实现数形结合解题,所以要熟悉基本函数的图象,并掌握图象的变化规律,比如:平移、伸缩、对称等.习题1、比较下列各组数的大小:  (1)若 ,比较 与 ;  (2)若 ,比较 与 ;  (3)若 ,比较 与 ;  (4)若 ,且 ,比较a与b;  (5)若 ,且 ,比较a与b.   解:(1)由 ,故 ,此时函数 为减函数.由 ,故 .  (2)由 ,故 .又 ,故 .从而 .  (3)由 ,因 ,故 .又 ,故 .从而 .  (4)应有 .因若 ,则 .又 ,故 ,这样 .又因 ,故 .从而 ,这与已知 矛盾.  (5)应有 .因若 ,则 .又 ,故 ,这样有 .又因 ,且 ,故 .从而 ,这与已知 矛盾.  小结:比较通常借助相应函数的单调性、奇偶性、图象来求解.2曲线 分别是指数函数 , 和 的图象,则 与1的大小关系是 (  ).             (   分析:首先可以根据指数函数单调性,确定 ,在 轴右侧令 ,对应的函数值由小到大依次为 ,故应选 .  小结:这种类型题目是比较典型的数形结合的题目,第(1)题是由数到形的转化,第(2)题则是由图到数的翻译,它的主要目的是提高学生识图,用图的意识.求最值3 求下列函数的定义域与值域.(1)y=2; (2)y=4x+2x+1+1.解:(1)∵x-3≠0,∴y=2的定义域为{x|x∈R且x≠3}.又∵≠0,∴2≠1,∴y=2的值域为{y|y>0且y≠1}.(2)y=4x+2x+1+1的定义域为R.∵2x>0,∴y=4x+2x+1+1=(2x)2+2·2x+1=(2x+1)2>1.∴y=4x+2x+1+1的值域为{y|y>1}.4 已知-1≤x≤2,求函数f(x)=3+2·3x+1-9x的最大值和最小值解:设t=3x,因为-1≤x≤2,所以,且f(x)=g(t)=-(t-3)2+12,故当t=3即x=1时,f(x)取最大值12,当t=9即x=2时f(x)取最小值-24。

      5、设 ,求函数 的最大值和最小值.  分析:注意到 ,设 ,则原来的函数成为 ,利用闭区间上二次函数的值域的求法,可求得函数的最值.  解:设 ,由 知,    ,函数成为 , ,对称轴 ,故函数最小值为 ,因端点 较 距对称轴 远,故函数的最大值为 .6(9分)已知函数在区间[-1,1]上的最大值是14,求a的值..解: , 换元为,对称轴为.当,,即x=1时取最大值,略解得 a=3 (a= -5舍去)7.已知函数 ( 且 )  (1)求 的最小值;  (2)若 ,求 的取值范围..解:(1) , 当 即 时, 有最小值为   (2) ,解得   当 时, ;  当 时, .8(10分)(1)已知是奇函数,求常数m的值; (2)画出函数的图象,并利用图象回答:k为何值时,方程|3X-1|=k无解?有一解?有两解?解: (1)常数m=1(2)当k<0时,直线y=k与函数的图象无交点,即方程无解;当k=0或k1时, 直线y=k与函数的图象有唯一的交点,所以方程有一解; 当0

      3)在(-∞, 1〕上是增函数在〔1,+∞)上是减函数13 求函数y=的单调区间.分析 这是复合函数求单调区间的问题可设y=,u=x2-3x+2,其中y=为减函数∴u=x2-3x+2的减区间就是原函数的增区间(即减减→增)u=x2-3x+2的增区间就是原函数的减区间(即减、增→减)解:设y=,u=x2-3x+2,y关于u递减,当x∈(-∞,)时,u为减函数,∴y关于x为增函数;当x∈[,+∞)时,u为增函数,y关于x为减函数.14 已知函数f(x)= (a>0且a≠1).(1)求f(x)的定义域和值域;(2)讨论f(x)的奇偶性;(3)讨论f(x)的单调性.解:(1)易得f(x)的定义域为{x|x∈R}.设y=,解得ax=-①∵ax>0当且仅当->0时,方程①有解.解->0得-11时,∵ax+1为增函数,且ax+1>0.∴为减函数,从而f(x)=1-=为增函数.2°当0

      1)证明:设x1<x2f(x2)-f(x1)=>0故对任何a∈R,f(x)为增函数.(2),又f(x)为奇函数 得到即16、定义在R上的奇函数有最小正周期为2,且时,(1)求在[-1,1]上的解析式;(2)判断在(0,1)上的单调性;(3)当为何值时,方程=在上有实数解.解(1)∵x∈R上的奇函数 ∴又∵2为最小正周期 ∴设x∈(-1,0),则-x∈(0,1),∴(2)设01)的图像是( )分析 本题主要考查指数函数的图像和性质、函数奇偶性的函数图像,以及数形结合思想和分类讨论思想.解法1:(分类讨论):去绝对值,可得y=又a>1,由指数函数图像易知,应选B.解法2:因为y=a|x|是偶函数,又a>1,所以当x≥0时,y=ax是增函数;x<0时,y=a-x是减函数.∴应选B.工厂搬迁对于一个企业来说,安全问题始终是第一位的,也是最基本的,过程中所涉及到的安全问题主要是人员的安全和设备拆装以及财产的安全。

      各部门经理和所有员工一定要以安全为核心,开展各项工作,职责到人、分工明确。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.