厦门灌口中学2024届高三下第三次考试数学试题.doc
20页厦门灌口中学2024届高三下第三次考试数学试题注意事项1.考生要认真填写考场号和座位序号2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.设i是虚数单位,若复数是纯虚数,则a的值为( )A. B.3 C.1 D.2.已知函数有三个不同的零点 (其中),则 的值为( )A. B. C. D.3.若双曲线的离心率为,则双曲线的焦距为( )A. B. C.6 D.84.过抛物线的焦点F作两条互相垂直的弦AB,CD,设P为抛物线上的一动点,,若,则的最小值是( )A.1 B.2 C.3 D.45.已知点,是函数的函数图像上的任意两点,且在点处的切线与直线AB平行,则( )A.,b为任意非零实数 B.,a为任意非零实数C.a、b均为任意实数 D.不存在满足条件的实数a,b6.已知分别为圆与的直径,则的取值范围为( )A. B. C. D.7.下列函数中,既是偶函数又在区间上单调递增的是( )A. B. C. D.8.设是定义域为的偶函数,且在单调递增,,则( )A. B.C. D.9.已知集合,则集合( )A. B. C. D.10.博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P1,P2,则( )A.P1•P2= B.P1=P2= C.P1+P2= D.P1<P211.已知数列满足:,则( )A.16 B.25 C.28 D.3312.小明有3本作业本,小波有4本作业本,将这7本作业本混放在-起,小明从中任取两本.则他取到的均是自己的作业本的概率为( )A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。
13.已知函数若关于的不等式的解集是,则的值为_____.14.定义在R上的函数满足:①对任意的,都有;②当时,,则函数的解析式可以是______________.15.在边长为2的正三角形中,,则的取值范围为______.16.设点P在函数的图象上,点Q在函数的图象上,则线段PQ长度的最小值为_________三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)以坐标原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,判断直线为参数)与圆的位置关系.18.(12分)在底面为菱形的四棱柱中,平面.(1)证明:平面;(2)求二面角的正弦值.19.(12分)在中,,.已知分别是的中点.将沿折起,使到的位置且二面角的大小是60°,连接,如图:(1)证明:平面平面(2)求平面与平面所成二面角的大小.20.(12分)如图,在三棱柱中,平面,,且.(1)求棱与所成的角的大小;(2)在棱上确定一点,使二面角的平面角的余弦值为.21.(12分)已知函数,.(Ⅰ)判断函数在区间上零点的个数,并证明;(Ⅱ)函数在区间上的极值点从小到大分别为,,证明:22.(10分)已知数列满足.(1)求数列的通项公式;(2)设数列的前项和为,证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1.D【解题分析】整理复数为的形式,由复数为纯虚数可知实部为0,虚部不为0,即可求解.【题目详解】由题,,因为纯虚数,所以,则,故选:D【题目点拨】本题考查已知复数的类型求参数范围,考查复数的除法运算.2.A【解题分析】令,构造,要使函数有三个不同的零点(其中),则方程需要有两个不同的根,则,解得或,结合的图象,并分,两个情况分类讨论,可求出的值.【题目详解】令,构造,求导得,当时,;当时,,故在上单调递增,在上单调递减,且时,,时,,,可画出函数的图象(见下图),要使函数有三个不同的零点(其中),则方程需要有两个不同的根(其中),则,解得或,且,若,即,则,则,且,故,若,即,由于,故,故不符合题意,舍去. 故选A. 【题目点拨】解决函数零点问题,常常利用数形结合、等价转化等数学思想.3.A【解题分析】依题意可得,再根据离心率求出,即可求出,从而得解;【题目详解】解:∵双曲线的离心率为,所以,∴,∴,双曲线的焦距为.故选:A【题目点拨】本题考查双曲线的简单几何性质,属于基础题.4.C【解题分析】设直线AB的方程为,代入得:,由根与系数的关系得,,从而得到,同理可得,再利用求得的值,当Q,P,M三点共线时,即可得答案.【题目详解】根据题意,可知抛物线的焦点为,则直线AB的斜率存在且不为0,设直线AB的方程为,代入得:.由根与系数的关系得,,所以.又直线CD的方程为,同理,所以,所以.故.过点P作PM垂直于准线,M为垂足,则由抛物线的定义可得.所以,当Q,P,M三点共线时,等号成立.故选:C.【题目点拨】本题考查直线与抛物线的位置关系、焦半径公式的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意取最值的条件.5.A【解题分析】求得的导函数,结合两点斜率公式和两直线平行的条件:斜率相等,化简可得,为任意非零实数.【题目详解】依题意,在点处的切线与直线AB平行,即有,所以,由于对任意上式都成立,可得,为非零实数.故选:A【题目点拨】本题考查导数的运用,求切线的斜率,考查两点的斜率公式,以及化简运算能力,属于中档题.6.A【解题分析】由题先画出基本图形,结合向量加法和点乘运算化简可得,结合的范围即可求解【题目详解】如图,其中,所以.故选:A【题目点拨】本题考查向量的线性运算在几何中的应用,数形结合思想,属于中档题7.C【解题分析】结合基本初等函数的奇偶性及单调性,结合各选项进行判断即可.【题目详解】A:为非奇非偶函数,不符合题意;B:在上不单调,不符合题意;C:为偶函数,且在上单调递增,符合题意;D:为非奇非偶函数,不符合题意.故选:C.【题目点拨】本小题主要考查函数的单调性和奇偶性,属于基础题.8.C【解题分析】根据偶函数的性质,比较即可.【题目详解】解:显然,所以是定义域为的偶函数,且在单调递增,所以故选:C【题目点拨】本题考查对数的运算及偶函数的性质,是基础题.9.D【解题分析】弄清集合B的含义,它的元素x来自于集合A,且也是集合A的元素.【题目详解】因,所以,故,又, ,则,故集合.故选:D.【题目点拨】本题考查集合的定义,涉及到解绝对值不等式,是一道基础题.10.C【解题分析】将三辆车的出车可能顺序一一列出,找出符合条件的即可.【题目详解】三辆车的出车顺序可能为:123、132、213、231、312、321方案一坐车可能:132、213、231,所以,P1=;方案二坐车可能:312、321,所以,P1=;所以P1+P2=故选C.【题目点拨】本题考查了古典概型的概率的求法,常用列举法得到各种情况下基本事件的个数,属于基础题.11.C【解题分析】依次递推求出得解.【题目详解】n=1时,,n=2时,,n=3时,,n=4时,,n=5时,.故选:C【题目点拨】本题主要考查递推公式的应用,意在考查学生对这些知识的理解掌握水平.12.A【解题分析】利用计算即可,其中表示事件A所包含的基本事件个数,为基本事件总数.【题目详解】从7本作业本中任取两本共有种不同的结果,其中,小明取到的均是自己的作业本有种不同结果,由古典概型的概率计算公式,小明取到的均是自己的作业本的概率为.故选:A.【题目点拨】本题考查古典概型的概率计算问题,考查学生的基本运算能力,是一道基础题.二、填空题:本题共4小题,每小题5分,共20分。
13.【解题分析】根据题意可知的两根为,再根据解集的区间端点得出参数的关系,再求解即可.【题目详解】解:因为函数,关于的不等式的解集是 的两根为:和;所以有:且;且;;故答案为:【题目点拨】本题主要考查了不等式的解集与参数之间的关系,属于基础题.14.(或,答案不唯一)【解题分析】由可得是奇函数,再由时,可得到满足条件的奇函数非常多,属于开放性试题.【题目详解】在中,令,得;令,则,故是奇函数,由时,,知或等,答案不唯一.故答案为:(或,答案不唯一).【题目点拨】本题考查抽象函数的性质,涉及到由表达式确定函数奇偶性,是一道开放性的题,难度不大.15.【解题分析】建立直角坐标系,依题意可求得,而,,,故可得,且,由此构造函数,,利用二次函数的性质即可求得取值范围.【题目详解】建立如图所示的平面直角坐标系,则,,,设,,,,根据,即,,,则,,即,,,则,,所以,,,,,,且,故,设,,易知二次函数的对称轴为,故函数在,上的最大值为,最小值为,故的取值范围为.故答案为:.【题目点拨】本题考查平面向量数量积的坐标运算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意通过设元、消元,将问题转化为元二次函数的值域问题.16.【解题分析】由解析式可分析两函数互为反函数,则图象关于对称,则点到的距离的最小值的二倍即为所求,利用导函数即可求得最值.【题目详解】由题,因为与互为反函数,则图象关于对称,设点为,则到直线的距离为,设,则,令,即,所以当时,,即单调递减;当时,,即单调递增,所以,则,所以的最小值为,故答案为:【题目点拨】本题考查反函数的性质的应用,考查利用导函数研究函数的最值问题.三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤17.直线与圆C相切.【解题分析】首先把直线和圆转换为直角坐标方程,进一步利用点到直线的距离的应用求出直线和圆的位置关系.【题目详解】直线为参数),转换为直角坐标方程为.圆转换为直角坐标方程为,转换为标准形式为,所以圆心到直线,的距离.直线与圆C相切.【题目点拨】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,直线与圆的位置关系式的应用,点到直线的距离公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.18.(1)证明见解析;(2)【解题分析】(1)由已知可证,即可证明结论;(2)根据已知可证平面,建立空间直角坐标系,求出坐标,进而求出平面和平面的法向量坐标,由空间向量的二面角公式,即可求解.【题目详解】方法一:(1)依题意,且∴,∴四边形是平行四边形,∴,∵平面,平面,∴平面.(2)∵平面,∴,∵且为的中点,∴,∵平。





