
平面问题有限元解法(公式推导讲解).ppt
63页平面问题的有限单元解法南京农业大学工学院机械工程系*南京农业大学工学院机械工程系有限元单元法基本思想n有限单元法的思想是将物体(连续的求解域)离散成有限个且按一 定方式相互联结在一起的单元组合,来模拟或逼近原来的物体,从 而将一个连续的无限自由度问题简化为离散的有限自由度问题求解 的一种数值分析法物体被离散后,通过对其中各个单元进行单元 分析,最终得到对整个物体的分析n有限单元法的分析步骤如下:q物体离散化q单元特性分析q单元组集,整体分析q求解未知节点的位移q由节点的位移求解各单元的位移和应力Date南京农业大学工学院机械工程系n基本变量 u ε σ(位移) (应变) (应力)n基本方程q力的平衡方程q几何方程q物理方程n求解方法q经典解析q半解析q传统数值解法q现代数值解法(计算机硬件、规范化、标准化、规模化)物体变形及受力情况的描述三大方面三大方程即:σ =E εE 弹性模量Date南京农业大学工学院机械工程系有限元单元模型中几个重要概念n单元q网格划分中每一个小的块体n节点q确定单元形状、单元之间相互联结的 点n节点力q单元上节点处的结构内力n载荷q作用在单元节点上的外力 (集中力、分布力)n约束p限制某些节点的某些自由度n弹性模量(杨式模量)En泊松比(横向变形系数)μn密度单元单元载荷节 点节点力约束Date南京农业大学工学院机械工程系平面问题有限单元法基本概念n有限单元法(FEM)是20世纪50年代以来随着计算机的广泛应用而发展起 来的一种数值解法。
简单地说,就是用结构力学方法求解弹性力学问题 n平面问题的有限单元法求解q将连续体变换成为离散化结构即将连续体划分为有限多个有限大小的单元 ,这些单元仅在一些结点连接起来,构成一个所谓离散化结构对于平面 问题,常用的单元是三角形单元)q用结构力学方法进行求解Date南京农业大学工学院机械工程系有限元单元法分析步骤(一)n结构离散化q 将结构分成有限个小的单元体,单元与单元、单元与边界之间通过节点连接 结构的离散化是有限元法分析地第一步,关系到计算精度和效率,包括以 下三个方面:n单元类型的选择选定单元类型,确定单元形状、单元节点数、 节点自由度数等n单元划分网格划分越细,节点越多,计算结果越精确,但计算 量越大网格加密到一定程度后计算精度提高就不明显,对应应 力变化平缓区域不必要细分网格n节点编码注意:有限元分析的结构已不是原有的物体或结构物,而是由同样材 料、众多单元以一定方式连接成的离散物体所以,用有限元分析计 算所获得的结果是近似的(满足工程要求即可)Date南京农业大学工学院机械工程系有限元单元法分析步骤(二)n单元特性分析q 选择未知量模式n选择节点位移作为基本未知量时,称为位移法;n选节点力作为基本未知量时,称为力法;n取一部分节点位移和一部分节点力作为未知量,称为混合法。
q分析单元力学性质n根据单元材料性质、形状、尺寸、节点数目、位置等,找出单元 节点力和节点位移关系式,应用几何方程和物理方程建立力和位 移的方程式,从而导出单元刚度矩阵q计算等效节点力n作用在单元边界上的表面力、体积力或集中力都需要等效地移到 节点上去,即用等效力来替代所有作用在单元上的力Date南京农业大学工学院机械工程系有限元单元法分析步骤(三)n整体分析q集成整体节点载荷矢量 F 结构离散化后,单元之间通过节点传递 力,作用在单元边界上的表面力、体积力或集中力都需要等效地移 到节点上去,形成等效节点载荷将所有节点载荷按照整体节点编 码顺序组集成整体节点载荷矢量q组成整体刚度矩阵K ,得到总体平衡方程:q引进边界约束条件,解总体平衡方程求出节点位移通过上述分析可以看出有限单元法的基本思想是“一分一合”,分是为了 进行单元分析,合是为了对整体的结构进行综合分析Date南京农业大学工学院机械工程系弹性力学中的几个基本概念• 作用于物体的外力可以分为体积力 和表面力 • 体力:分布在物体体积内的力,如 重力、惯性力 • 为了表明物体在某一点P所受体力的 大小和方向,在这一点取物体的一 小部分,它包含P点,而它的体积为 △V,作用于其上的体力为△F,则 体力的平均集度为△F/ △V。
当△V 不断减小,假定体力为连续分布, 则△F/ △V将趋于一定的极限f,即:• 这个极限矢量f就是该物体在P点所受体力在集度 f的方向就是△F的方向,矢量f在坐标轴x,y,z上的投 影fx,fy,fz称为该物体在P点的体力分量,以沿坐标轴 正方向为正,沿坐标轴负方向为负 Date南京农业大学工学院机械工程系弹性力学中的几个基本概念• 面力:分布在物体表面上的力,如 流体压力和接触力 • 为了表明物体在某一点P所受面力的 大小和方向,在这一点取物体表面 的一小部分,它包含P点,而它的面 积为△S,作用于其上的面力为△F ,则面力的平均集度为△F/ △S当 △S不断减小,假定体力为连续分布 ,则△F/ △S将趋于一定的极限 , 即: • 这个极限矢量 就是该物体在P点所受面力在集度 的方向就是△F的方向,矢量 在坐标轴x,y,z上的投 影 称为该物体在P点的面力分量,以沿坐 标轴正方向为正,沿坐标轴负方向为负Date南京农业大学工学院机械工程系弹性力学中应力的方向规定n每一个面上的应力可以分解为一个正应力和两个切应力n正应力用σ表示,加上一个下标字母,表示作用面和作用方向。
n切应力用τ表示,并加上两个下标字母,表示作用面和作用方向前 一个字母表示作用面垂直于哪一个坐标轴,后一个字母表示作用方 向沿着哪一个坐标轴Date南京农业大学工学院机械工程系弹性力学中的基本假定n连续性——假定整个物体的体积都被组成这个物体的介质 所填满,不留任何空隙n完全弹性——假定物体在引起形变的外力被除去之后能恢 复原形,而没有任何剩余形变n均匀性——假定整个物体有同一材料组成的,物体的所有 各部分具有相同的弹性n各向同性——假定物体的弹性在所有各个方向都相同n小变形——假定位移和形变是微小的,物体受力之后,整 个物体所有各点的位移都远远小于物体原来的尺寸,因而 应变和转角都远小于1Date南京农业大学工学院机械工程系平面问题的基本理论n任何一个实际的弹性力学问题都是空间问题,但是如 果所考察的弹性体具有某种特殊的形状,并且承受的 是某些特殊的外力和约束,就可以把空间问题简化为 近似的平面问题n两种典型的平面问题q平面应力问题q平面应变问题Date南京农业大学工学院机械工程系•由于板很薄,外力不沿厚度变化,应力沿板的厚度又是连续分布的,所以可以认 为在整个薄板的所有各点:•只剩下平行于xy面的三个平面应力分量,即:•这种问题成为平面应力问题。
平面应力问题n设有很薄的等厚度薄板,只在板边上受 有平行于板面并不沿厚度变化的面力或 约束同时,体力也平行于板面不沿厚 度变化n设薄板的厚度为δ以薄板的中面为xy 面,以垂直于中面的任何一直线为z轴 所以有:Date南京农业大学工学院机械工程系•只剩下平行于xy面的三个形变分量,即:•这种问题成为平面应变问题•由于z方向的位移处处为0,所以: ,由于z方向的伸缩被阻止,一般平面应变问题n设有很长的柱形体,它的横截面不沿长度变化 ,在柱面上受有平行于横截面而且不沿长度变 化的面力或约束同时,体力也平行于横截面 不沿长度变化n假想该柱体为无限长,以任一横截面为xy面, 以任一纵线为z轴,则所有一切应力分量、形 变分量和位移分量都不沿z方向变化,而只是xy 的函数,所有各点的位移矢量都平行于xy面, 这种问题称为平面位移问题•由对称条件可知:•由胡克定律,相应的切应变:Date南京农业大学工学院机械工程系三大基本方程n根据静力学、几何学和物理学三方面条件,建立三套方程q平面问题中,根据微分体的平衡条件,建立平衡微分方程:(1-1)q根据微分线段上形变与位移之间的几何关系,建立几何方程:(1-2) q根据应力与形变之间的物理关系,建立物理方程:(1-3)(1-3‘)Date南京农业大学工学院机械工程系平衡微分方程n从弹性体中取出一个微分体,根据平衡条 件导出应力分量与体力分量之间的关系式 ,也就是平面问题的平衡微分方程。
n从弹性体中取出一个微小的正平行六面体 ,它在x和y方向的尺寸分别为dx和dy,在z 方向的尺寸为一个单位长度•以x为投影轴,列出投影的平衡方程:•约简以后,两边除以dxdy,得:•同理,以y为投影轴,列出投影的平衡方程,化简得 :Date南京农业大学工学院机械工程系•假定已知任一点P处坐标面上的应力分量σx,σ y ,τx y = τ y x 求经过该点的,平行于z轴而 倾斜于x轴和 y轴的任何倾斜面上应力 •从在P点附近取一个平面AB,它平行于上述斜 面,并经过P点划出一个微小的三棱柱PAB 当AB无限小而趋于P点时,平面AB上的应力就 成为斜面上的应力平面问题中一点的应力状态•设斜面AB 的长度为ds,则PB面及A面的长度 分别为 lds及mds,而PAB的面积为 ldsmds/2, 棱柱的厚度设为1 •由x轴平衡条件,得:•其中,fx为体力分量将上式除以ds,并令ds趋于0(斜面AB趋于P点),即得:•由y轴平衡条件,得:•用n表示斜面AB的外法线方向,其方向余弦为 :Date南京农业大学工学院机械工程系几何方程n经过弹性体内的任意一点P,沿x 轴和y轴的正方向取两个微小长度 的线段PA=dx和PB=dy。
假定弹 性体受力后,P,A,B三点分别移动 到P’,A’,B’.•线段PA的线应变是:注:由于位移微小,y方向的位移v引起的PA的伸缩,是高一阶微量,略去不计 •线段PB的线应变是:•线段PA与 PB之间的直角的改变,即切应变•线段PA的转角α是:•线段PB的转角β是:Date南京农业大学工学院机械工程系物理方程n在理想的弹性体中,形变分量和应力分量之间的关系,在材料力学根据 胡克定律导出如下:•在平面应力问题中,σz=0,式变为:•在平面应变问题中,只要将上式中的E换为 ,μ换为 就得到平面应变问题的物理方程Date南京农业大学工学院机械工程系边界条件q若在su部分边界上给定了约束位移分量 和 ,则对于此边界上的 每一点,位移函数u和v应满足条件:q其中(u)s 和 (v)s 是位移的边界值, 和 在边界上是坐标的已 知函数n边界条件表示在边界上位移与约束,或应力与面力之间的关系式 它可以分为位移边界条件、应力边界条件和混合边界条件q位移边界条件:q应力边界条件:q若在su部分边界上给定了面力 和 ,则由平衡条件得出平面应 力问题的应力(或面力)边界条件为:其中,l,m是边界面外法线的方向余弦 。
Date南京农业大学工学院机械工程系圣维南原理n在求解弹性力学问题时,应力分量、形变分量和位移分量 必须满足区域内的三套基本方程,还必须满足边界上的边 界条件但是,要使边界条件得到完全满足,往往遇到很 大的困难n圣维南原理可为简化局部边界上的应力边界条件提供很大 方便n圣维南原理表明,如果把物体的一小部分边界上的面力, 变换为分布不同但静力等效的面力(主矢相同,对同一点 的主矩也相同),那么,近处的应力分布将有显著的改变 ,但是远处所受的影响可以不计Date南京农业大学工学院机械工程系圣维南原理的应用n例,设有柱形构件,在两端截面的 形心受到大小相等而方向相反的拉 力F(a)如果把一端或两端的拉 力变换为静力等效的力,则只有虚 线划出的部分的应力分布有显著的 改变,而其余部分所受影响是可以 不计的•由于(d)图中,面力连续分布,边界条件简单,应力容易求得。












