
2025届安徽省砀山县九上数学开学联考试题【含答案】.doc
23页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………2025届安徽省砀山县九上数学开学联考试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如果反比例函数 的图象在所在的每个象限内y都是随着x的增大而减小,那么m的取值范围是( )A.m> B.m< C.m≤ D.m≥2、(4分)下列二次根式中是最简二次根式的为( )A. B. C. D.3、(4分)如果方程组的解x、y的值相等 则m的值是( )A.1 B.-1 C.2 D.-24、(4分)已知点和点在反比例函数的图象上,若,则( )A. B.C. D.5、(4分)在某中学理科竞赛中,张敏同学的数学、物理、化学得分(单位:分)分别为84,88,92,若依次按照4:3:3的比例确定理科成绩,则张敏的成绩是( )A.84分 B.87.6分 C.88分 D.88.5分6、(4分)点位于平面直角坐标系中的( ).A.第一象限 B.第二象限 C.第三象限 D.第四象限7、(4分)若分式在实数范围内有意义,则实数的取值范围是( )A. B. C. D.8、(4分)一次函数与的图象如图所示,则下列结论:①k<0;②a<0,b<0;③当x=3时,y1=y2;④不等式的解集是x<3,其中正确的结论个数是( )A.0 B.1 C.2 D.3二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在中,点是边上的动点,已知,,,现将沿折叠,点是点的对应点,设长为.(1)如图1,当点恰好落在边上时,______;(2)如图2,若点落在内(包括边界),则的取值范围是______.10、(4分)某射手在相同条件下进行射击训练,结果如下:该射手击中靶心的概率的估计值是______(精确到0.01).11、(4分)有一组数据:.将这组数据改变为.设这组数据改变前后的方差分别是,则与的大小关系是______________.12、(4分)分解因式:x2y﹣y3=_____.13、(4分)如图,在平面直角坐标系xOy中,一次函数与反比例函数的图象交于点,.结合图象,直接写出关于x的不等式的解集____三、解答题(本大题共5个小题,共48分)14、(12分)已知某企业生产的产品每件出厂价为70元,其成本价为25元,同时在生产过程中,平均每生产一件产品有1 m3的污水排出,为达到排污标准,现有以下两种处理污水的方案可供选择.方案一:将污水先净化处理后再排出,每处理1 m3污水的费用为3元,并且每月排污设备损耗为24 000元.方案二:将污水排到污水厂统一处理,每处理1 m3污水的费用为15元,设该企业每月生产x件产品,每月利润为y元.(1)分别写出该企业一句方案一和方案二处理污水时,y与x的函数关系式;(2)已知该企业每月生产1 000件产品,如果你是该企业的负责人,那么在考虑企业的生产实际前提下,选择哪一种污水处理方案更划算?15、(8分)因式分解:(1)2x3﹣8x;(2)(x+y)2﹣14(x+y)+4916、(8分)如图,在△ABC中,∠ABC=90°,(1)按下列要求完成尺规作图:作线段AC的垂直平分线l,交AC于点O;连接BO并延长至D,使得OD=OB;连接DA、DC(保留作图痕迹,请标明字母);(2)判断四边形ABCD的形状,并说明理由.17、(10分)计算:化简:18、(10分)先化简,再求值,从-1、1、2中选择一个你喜欢的且使原式有意义的的值代入求值.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,于,于,且,,,则_______.20、(4分)如图在中,,,,为等边三角形,点为围成的区域(包括各边)内的一点,过点作,交直线于点,作,交直线于点,则平行线与间距离的最大值为_________.21、(4分)如图,Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF最小值是________.22、(4分)一组数据﹣1,0,1,2,3的方差是_____.23、(4分)已知,,则2x3y+4x2y2+2xy3=_________.二、解答题(本大题共3个小题,共30分)24、(8分)在正方形ABCD中.(1)如图1,点E、F分别在BC、CD上,AE、BF相交于点O,∠AOB=90°,试判断AE与BF的数量关系,并说明理由;(2)如图2,点E、F、G、H分别在边BC、CD、DA、AB上,EG、FH相交于点O,∠GOH=90°,且EG=7,求FH的长;(3)如图3,点E、F分别在BC、CD上,AE、BF相交于点O,∠AOB=90°,若AB=5,图中阴影部分的面积与正方形的面积之比为4:5,求△ABO的周长.25、(10分)在平面直角坐标系xOy中,对于两点A,B,给出如下定义:以线段AB为边的正方形称为点A,B的“确定正方形”.如图为点A,B 的“确定正方形”的示意图.(1)如果点M的坐标为(0,1),点N的坐标为(3,1),那么点M,N的“确定正方形”的面积为___________;(2)已知点O的坐标为(0,0),点C为直线上一动点,当点O,C的“确定正方形”的面积最小,且最小面积为2时,求b的值.(3)已知点E在以边长为2的正方形的边上,且该正方形的边与两坐标轴平行,对角线交点为P(m,0),点F在直线上,若要使所有点E,F的“确定正方形”的面积都不小于2,直接写出m的取值范围.26、(12分)如图,是的中位线,过点作交的延长线于点,求证:.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】根据反比例函数的性质可得1-2m>0, 再解不等式即可.【详解】解:有题意得:反比例函数的图象在所在的每个象限内y都是随着x的增大而减小,1-2m>0,解得:m<,故选:B.此题主要考查了反比例函数的性质.对于反比例函数y=(k≠0), 当k>0时, 在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.2、B【解析】根据最简二次根式的定义进行解答即可.【详解】解:根据最简二次根式的定义:“满足条件:(1)被开方数中不含开得尽方的因数和因式;(2)被开方数中不含分母.”可知,选项A、C、D中的二次根式都不是最简二次根式,只有B中的二次根式是最简二次根式.本题考查的是最简二次根式的定义,掌握最简二次根式的定义:“满足条件:(1)被开方数中不含开得尽方的因数和因式;(2)被开方数中不含分母.”是解题的关键.3、B【解析】由题意x、y值相等,可计算出x=y=2,然后代入含有m的代数式中计算m即可【详解】x、y相等 即x=y=2,x-(m-1)y =6 即2−(m-1)×2=6 解得m=-1故本题答案应为:B二元一次方程组的解法是本题的考点,根据题意求出x、y的值是解题的关键4、D【解析】根据反比例函数的图像与性质逐项分析即可.【详解】∵k<0,∴反比例函数的图像在二、四象限.A.当点在第二象限,点在第四象限,且时,x1+x2>0,y1+y2>0,此时,故A错误;B. 当点和点在第四象限时,x1+x2>0,y1+y2<0,此时,故B错误;C. 当点和点在第四象限时,x1·x2>0,x1-x2<0,y1-y2<0,此时,故C错误;D. ∵A、B、C均错误,∴D正确.故选D.本题考查了反比例函数的图像与性质,反比例函数(k是常数,k≠0)的图像是双曲线,当k>0,反比例函数图象的两个分支在第一、三象限,在每一象限内,y随x的增大而减小;当 k<0,反比例函数图象的两个分支在第二、四象限,在每一象限内,y随x的增大而增大.5、B【解析】根据加权平均数的计算方法进行计算即可得出答案.故选B.【详解】解:(分).本题考查了加权平均数.理解“权”的含义是解题的关键.6、A【解析】本题根据各象限内点的坐标的特征即可得到答案【详解】解:∵点的横纵坐标都是正的∴,点P在第一象限故选A本题考查平面直角坐标系中四个象限内点的横纵坐标的正负,准确区分为解题关键7、D【解析】直接利用分式有意义的条件分析得出答案.【详解】∵代数式在实数范围内有意义,∴x+1≠0,解得:x≠-1.故选D.此题主要考查了分式有意义的条件,正确把握定义是解题关键.8、D【解析】解:根据一次函数的图象可得:a<0,b>0,k<0,则①正确,②错误;根据一次函数和方程以及不等式的关系可得:③和④是正确的故选:D.本题考查一次函数的图象及一次函数与不等式.二、填空题(本大题共5个小题,每小题4分,共20分)9、2; 【解析】(1)根据折叠的性质可得,由此即可解决问题;(2)作AH⊥DE于H.解直角三角形求出AH、HB′、DH,再证明,求出EB′即可解决问题;【详解】解:(1)∵折叠,∴.∵,∴,∴,∴,∴.(2)当落在上时,过点作于点.∵,,∴,∴.在中,,∴.∵,∴,∴.∴,∴,∴.本题考查翻折变换、平行四边形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.10、0.1.【解析】根据表格中实验的频率,然后根据频率即可估计概率.【详解】解:由击中靶心频率都在0.1上下波动,∴该射手击中靶心的概率的估计值是0.1.故答案为:0.1.本题考查了利用频率估计概率的思想,解题的关键是求出每一次事件的频率,然后即可估计概率解决问题.11、【解析】设数据,,,,的平均数为,根据平均数的定义得出数据,,,,的平均数也为,再利用方差的定义分别求出,,进而比较大小.【详解】解:设数据,,,,的平均数为,则数据,,,,的平均数也为,,,.故答案为.本题考查方差的定义:一般地设个数据,,,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12、y(x+y)(x﹣y).【解析】试题分析:先提取公因式y,再利用平方差公式进行二次分解.解:x2y﹣y3=y(x2﹣y2)=y(x+y)(x﹣y).故答案为y(x+y)(x﹣y).13、x<-2或0












