
偶极矩介电常数.docx
28页溶液法测定极性分子的偶极矩一、实验目的了解电介质极化与分子极化的概念,以及偶极矩与分子极化性质的关系掌握溶液法测 定极性分子永久偶极矩的理论模型和实验技术,用溶液法测定乙酸乙酯的偶极矩二、实验原理德拜(Peter Joseph William Deby指旨出,所谓极性物质的分子尽管是电中性的,但仍 然拥有未曾消失的电偶极矩,即使在没有外加电磁场时也是如此分子偶极矩的大小可以从 介电常数的数据中获得,而对分子偶极矩的测量和研究一直是表征分子特性重要步骤1、偶极矩、极化强度、电极化率和相对电容率(相对介电常数)首先定义一个电介质的偶极矩(dipole moment)考虑一簇聚集在一起的电荷,总的净 电荷为零,这样一堆电荷的偶极矩p是一个矢量,其各个分量可以定义为p =£ q x p =£ q y p =£ q zx i i y i i z i ii i i式中电荷q .的坐标为3 , y,Z )偶极矩的SI制单位是:C -mi i i i将物质置于电场之中通常会产生两种效应:导电和极化导电是在一个相对较长的(与 分子尺度相比)距离上输运带电粒子极化是指在一个相对较短的(小于等于分子直径)距 离上使电荷发生相对位移,这些电荷被束缚在一个基本稳定的、非刚性的带电粒子集合体中 (比如一个中性的分子)。
一个物质的极化状态可以用矢量P表示,称为极化强度(polarization)矢量?的大小 定义为电介质内的电偶极矩密度,也就是单位体积的平均电偶极矩,又称为电极化密度,或 电极化矢量这定义所指的电偶极矩包括永久电偶极矩和感应电偶极矩P的国际单位制 ►度量单位是C-m-2为P取平均的单位体积当然很小,但一定包含有足够多的分子在一个微小的区域内,P的值依赖于该区域内的电场强度E在这里,有必要澄清一下物质内部的电场强度的概念在真空中任意一点的电场强度E的定义为:在该点放置一个电荷为dq的无限微小的“试验电荷”,则该“试验电荷”所受 到的力为切0当将这个定义应用到物质内部时,在原子尺度上会引起巨大的电场涨落为此,物质内部某一点的宏观电场强度E定义为在该点邻近的小区域内原子尺度电场强度的平均值,这个小区域当然比通常标准要小得多,但仍足以容纳足够多的分子在电磁学中,电介质响应外加电场而极化的程度可以用电极化率X ( electricsusceptibility)来度量,在各向同性、线性和均匀的电介质中,电极化率X的定义为P = £ XE0(18-1)式中 £ 0 = 8.85418782 x 10-12 F - m-1,为真空电容率(vacuum permittivity),或真空介电常 数(vacuum dielectric constant)。
可以用电位移矢量D来表示电场E如何影响电介质中电荷的重排(包括电荷迁移和电 偶极转向等),D矢量的定义为 —► —► —►D = £ 0 E + P(18-2)由此得到电位移矢量D正比于电场强度E — — —D = £ 0(1 +X ) E = £E(18-3)式中e为电介质的绝对电容率(absolutepermittivity),也称为介电常数(dielectric constant)定义相对电容率(relative permittivity) £尸&£ =—r £0也称为相对介电常数(relative dielectric constant)据此得到电极化率与相对电容率的关系 为X =£ -1 D = ££ E(18-4)在真空中,电极化率X =0由此可见,电容率和介电常数其实是一个概念介电常数是在介质内部形成电场时遇 到的阻碍程度的度量,也就是说,介电常数度量了外电场与电介质之间的相互影响介电常 数越大,电介质中单位电荷产生的电场(或电流)也越大,在电介质内部的电场强度会有可 观的下降此外,我们常用七来表征电介质或绝缘材料的电性能,即在同一电容器中用 某一物质为电介质时的电容C和真空时的电容C0的比值8 C£ =——= r 8 0 C0(18-5)表示电介质在电场中贮存静电能的相对能力。
相对介电常数愈小绝缘性愈好,空气和CS的8值分别为1.0006和2.6左右,而水的8值特别大,10°C时为83.83介电常数 2 r r是物质相对于真空来说增加电容器电容能力的度量,一个电容板中充入介电常数为 8r的物质后电容变大8,倍电介质有使空间比起实际尺寸变得更大或更小的属性,例如, 当一个电介质材料放在两个电荷之间,它会减少作用在它们之间的力,就像它们被移 远了一样介电常数随分子偶极矩和可极化性的增大而增大在化学中,介电常数是溶剂的一 个重要性质,它表征溶剂对溶质分子溶剂化以及隔开离子的能力介电常数大的溶剂, 有较大隔开离子的能力,同时也具有较强的溶剂化能力—► 介电常数经常出现在许多与电介质有关的物理学公式中,如前面的电极化强度矢量尸——和电位移矢量D等另外,电磁波在介质中传播的相速度为c 1 1 cv = — = = — = = —n 即 ;8 8日日 8曰r 0 r 0 r r式中c、n、R、Rr、R0分别是真空中的光速、介质的折射率、磁导率、相对磁导率和真 空磁导率,真空电容率80 = (R0C2)-1在相对磁导率Rr " 1时,折射率n w 贮对于各向异性介质(如某些晶体),P与E的方向不同,但它们的各分量间仍有线性关 系,介电常数要用张量表示。
对于一些特殊的电介质(如铁电体),或者在电场很大(如激 光)的条件下,P与E将呈现非线性关系,介电常数的表示式也是非常复杂的2、外电场在电介质中引起的变化从前面的讨论中可知,极化强度与偶极矩有关,而极化强度又可以通过测量介电常数 获得,因此原则上可以通过介电常数的测定获得分子偶极矩的信息但是,介电常数除了由 电介质本身的性质决定外,一般还与介质的温度及电磁场变化的频率有关在电磁波的频率 很高进入光波范围时,介电常数也会随着频率的变化而变化,即出现色散现象一般来说,介质无法即时对外加电场作出响应,因此有关电极化强度的表达式应写作P(t) = 80j * x(t -1')E(t')dt' ►即电极化强度是电场与电极化率的卷积(convolution)电极化率Z表征当电场E在时间t'作 — — —用在某个物理系统后,电极化强度P在时间t的反应根据因果关系,P不可能在E作用前产生反应,因此当At < 0时,x (At) = 0,积分上限可至+8这个因果关系的存在说明x (At)的傅立叶变换X(s)在复平面的上半部分是可解析的,即所谓的克拉莫-克若尼关系 式(Kramers - Kronig relations),因此可以将电极化率更方便地写作为傅立叶变换的形式—— ——P(s) = 8 0x (s) E (①)显然,电极化率的频率依赖关系导致介电常数的频率依赖关系,而电极化率对频率的关系表 征了物质的色散特性。
由于物质具有质量,物质的电极化响应无法瞬时跟上外电场响应总是必须合乎因果 关系,这可以用相位差来表达因此,电容率时常以复函数来表达(复数允许同步的设定大 小值和相位),而这复函数的参数为外电场频率s : 8t£ (s)这样,电容率的关系式为D e - is 七 =§ (s) E e 一 ist 0 0式中D0、E0分别表示电位移矢量D、电场强度E的振幅一个电介质对于静电场的响应可以用电容率的低频极限来描述,也称为“静电容率”8,, 即8 = lim 8 (s)在高频率极限,复电容率一般标记为88,当频率等于或超过等离子体频率(plasma frequency) 时,电介质的物理行为近似理想金属,可以用自由电子模型来计算对于低频率交流电场, 静电容率是个很好的近似;随着频率的增高,可测量到的相位差5开始出现在D和E之间,5出现的频率与温度和介质种类有关在电场强度E0中等大小时,D和E成正比£ = e0 ei5 = |s |e/80由于介质对于交流电场的响应特征是复电容率,为了更详细的分析其物理性质,很自然地,必须分离其实数和虚值部份,通常写为£ (①)=£ '(①)+ is "(①)=Do (cos 5 + i sin 5)0式中虚值部份£ ''关系到能量的耗散,而实值部份£ '则关系到能量的储存。
图18.1几种电极化机制:取向极化、离子极化、电子极化通常,电介质对于电磁能量有几种不同的吸收机制受到这几种吸收机制的影响,随 着频率的改变,电容率函数也会有所改变:(1) 弛豫(relaxation)效应发生于永久偶极分子和感应偶极分子当频率较低的时候,电 场的变化很慢这允许偶极子足够的时间,对于任意时候的电场,都能够达成平衡状态假 若因为介质的黏滞性,偶极子无法跟上频率较高的电场,电场能量就会被吸收,由而导致能 量耗散偶极子的这种弛豫机制称为电介质弛豫(dielectric relaxation)理想偶极子的弛豫 机制可以用经典的德拜弛豫(Debye relaxation)来描述2) 共振效应是由原子、离子、电子等等的旋转或振动产生的在它们特征吸收频率的附 近,可以观察到这些过程上述两种效应时常会合并起来,使得电容器产生非线性效应从量子力学的观点看,电 容率可以用发生于原子层次和分子层次的量子作用来解释:在较低频率区域,极性介电质的分子会被外电场电极化,因而诱发出周期性转动例如, 在微波频率区域,微波场促使物质内的水分子做周期性转动水分子与周边分子的相互碰撞 产生了热能,使得含水分物质的温度增高。
这就是为什么微波炉可以很有效率的将含有水分 的物质加热水的电容率的虚值部分(吸收指数)有两个最大值,一个位于微波频率区域, 另一个位于远紫外线(UV)频率区域,这两个共振频率都高于微波炉的操作频率中间频率区域高过促使转动的频率区域,又远低于能够直接影响电子运动的频率区域, 能量是以共振的分子振动形式被吸收对于水介质,这是吸收指数开始显著地下降的区域, 吸收指数的最低值是在蓝光频率区域(可见光谱段),这就是为什么日光不会伤害像眼睛一 类的含水生物组织的原因在高频率区域(像远紫外线频率或更高频率),分子无法弛豫这时,能量完全地被原 子吸收,因而激发电子,使电子跃迁至更高能级,甚至游离出原子拥有这频率的电磁波会 导致电离辐射3、分子偶极矩的测量原理前面讨论的都是电介质的宏观参数和特性,如何将这些宏观物理量与物质的微观性质联 系起来,进而获得这些微观物理量,是需要考虑的问题分子结构可以被看成是由电子和分子骨架所构成由于其空间构型各异,其正负电荷中 心可以重合,也可以不重合,前者称为非极性分子,后者称为极性分子,分子的极性可用偶 极矩来表示两个大小相等符号相反的电荷系统的电偶极矩的定义为—► —►P = q - r式中—是两个电荷中心间距矢量,方向是从正电荷指向负电荷;q为电荷量。
一个电子的电荷为e = 1.60217733 x 10-19 C = 4.803046581 x 10-10 e.s.u.而分子中原子核间距的数量级为1A = 10-10m = 10-8cm,由此计算出的偶极矩数值为P = 4.803046581x10-18 e.s.u. - cm = 4.803046581Debye=1.60217733 x 10-29 C - m偶极矩的静电制单位是德拜(Debye,符号D),1D = 1x10-18e.s.u.-cm = 3.333572221x10-30。
