
低轨卫星组网设计.docx
6页1概述卫星星座是指由多颗卫星按照一定规则和形状构成的可提供一定覆盖性能的卫 星网络,是多颗卫星进行协同工作的基本形式卫星星座结构会影响网络覆盖区 域、网络时延和系统成本等传统的同步轨道卫星轨道高、链路损耗大,对地面 终端的EIRP和接收天线的G/T值要求过高,难以实现手持机与卫星直接进行 通信;而低轨卫星由于链路损耗小,降低了对用户终端EIRP和G/T值的要求, 可支持地面小型终端与卫星的直接通信,有利于信息的实时传输现代通信的 发展要求卫星通信系统应具有全球通信能力低轨卫星实现全球覆盖所需的卫星 数目较多(Iridium系统66颗星),系统实现成本很高,对于我国这样的发展中 国家要在短期内构建全球性低轨卫星通信系统,无论是在经济上还是在技术上 都存在较大困难因此,在预期星座的整体构型下,通过设计和筛选,合理部 署少数卫星以满足当前任务和需求,并在今后发展中通过不断发射新卫星进行 补网,最终实现星座的预期覆盖和通信能力,是我国卫星通信发展的一条可行之 路2星座参数设计2.1轨道设计椭圆轨道多用于区域性覆盖,但轨道倾斜角必须为63.4° (为了避免拱点漂移), 这对中低纬度地区的覆盖十分不利,而圆轨道的倾斜角可在0°〜90°。
之间 任意选择考虑我国所处纬度范围为北纬4°〜54°之间,星座设计宜应采用 倾斜圆轨道轨道高度选择主要是系统所需卫星数目与地面终端EIRP和G/T 值的折衷同时,轨道高度的选择还需考虑地球大气层和范•阿伦带两个因素的 影响,通常认为LEO卫星的可用轨道高度为700〜2 000 km2.2卫星周期设计为了便于卫星轨道控制,通常选择使用回归轨道,即卫星运行周期与地球自转周 期成整数比卫星运行周期与地球自转周期关系如下式所示:Ts,= k/Te n (1)式中,k、n为整数,Ts为卫星运行周期,Te为地球自转周期,且Te=86 164 s根据开普勒定理,可得卫星周期Ts(单位s)与轨道高度h关系如下:T二2「呢卫s 卩 (2)式中,地球半径Re=6 378.137 km,开普勒常数―398601,98Km3;s2取k=2, n=25,可得卫星周期Ts=6893 s,轨道高度h=1450 km2.3星座相位关系设计星座相位关系的确定是指确定卫星在星群中的位置,它包括轨道倾角、轨道平面 的布置、同一平面内卫星的位置和相邻轨道卫星的相对位置关系通常,为了 使卫星具有最大的均匀覆盖特性,同一轨道平面内的卫星应均匀分布,即相邻 卫星的相位差应 满足360 /m,m为该轨道平面内的卫星数量。
对于不同轨道平 面内卫星,相对相位角的不同会使星座的覆盖特性相差甚远根据立体几何的关系,推导出两个星下点(卫星与 地心连线和地面的交点)之间的距离d的公式如下:d 二 RearccosE — sin2 p cos2 0 — sin2 0i i(in2 0 + 2sin0 cos02 1 2)2〕式中,0 1、02为两星下点的纬度,妒为两星下点经度差的绝对值相对相角优化算法准则是使星下点间的最小距离最大化3覆盖分析为了研究方便,假定卫星对地球的覆盖是对准地心的且只有一个大波束圆轨道 时单颗卫星对地覆盖几何关系如图1所示图1圆轨道卫星覆盖几何关系示意图 其中,系统观察点的仰角:E 二 arctan(h + Re)• cosa - Re(+ Re)・ sin a覆盖区半径:X = Re・ sin a当卫星高度较低时,如果仍保持较大的仰角,则单颗卫星的覆盖范围将大大减 小虽然小仰角时电波的传输衰落大从而需要较大的系统余量,但是由于卫星 高度低,链路相应较短,传播损耗本身比较小,系统提供较大余量并不存在特别 的困难,因此可以适当减小系统的最小仰角以增大卫星的覆盖范围通常规定系 统的最小仰角为10°左右。
4星座设计方案4.1连续覆盖低轨卫星星座设计方案 综合考虑星座设计的上述因素后,假定低轨卫星星座共由3个轨道平面构成,轨 道高度1450 km,利用相位优化准则及STK仿真研究可得,相邻轨道之间卫星的 最佳相位差为14.5°,假定星座覆盖目标为包括我国全部海域及其周边区域在 内的中低纬度地区表1列出了不同轨道倾角时星座设计方案与其覆盖特性统 计参数方 案轨道高度/km轨道平面数卫星总 数轨道倾 角/(° )-45 °~45 ° 覆 盖率-50 °~50 ° 覆 盖率-55 °~55 ° 覆 盖率方 案 A14503243010010099.05方 案B145032438100100100方 案 C14503244299.8999.6399.90方 案D14503244599.2699.1999.80表1不同低轨星座方案及覆盖统计由表可知,方案B的覆盖性能最优,能够满足对中低纬度地区的完全连续覆盖 通过仿真还可以发现,方案B有较大的系统余量,即当设定系统最小仰角大于 50时,该星座对于指定纬度地区仍有良好的覆盏陛能,能够满足实时通信的要 求4.2区域覆盖型星座设计4.2.1背景假定远程指挥控制与通信保障能力是影响和制约军队作战半径和作战能力的重要因 素。
传统的地面通信手段受地理环境限制较大,难以实现对通信距离的有效扩 展,相反,卫星通信由于不受地理条件的制约,可以作为扩展通信保障半径的重 要手段在当前我国周边的复杂形势下,现有的地面通信手段无法满足在敏感 区域行动的需求,而静止轨道卫星又难以实现信息的实时传递,因此,在卫星通 信的阶段性发展中应首先解决敏感区域内的通信问题,为有效扩展作战半径和作 战指挥提供通信保障4.2.2非连续单星均匀覆盖方案设计结合方案B,假定第一阶段发射4颗卫星,轨道高度为1 450 km,轨道倾角38°, 卫星平均分布在2个轨道平面上,轨道平面升交点赤经相差120°要求星座能 够以一定时间间隔实现对目标区域的定时覆盖通过仿真研究,各卫星轨道参数设置如表2所示轨道参数卫星轨道咼度/km轨道倾角 /(° )升交点赤经 /(° )近地点辐角/(° )Sa t1145038090Sa t21450380270Sa t314503812060Sa t4145038120240表2卫星轨道参数设置假定目标区域是以我国某地为中心、半径为2 000 km的圆形区域,利用STK对 一个周期(48 h)内星座对目标区域的覆盖特性进行仿真统计,结果可得: 星座可以在平均每45 min内完成对目标区域的一次覆盖,每次覆盖时间约为 10〜20 min,星座在5: 30—11: 30时间段内覆盖尤为集中。
事实上,可以通过 改变卫星的近地点辐角来调整卫星集中覆盖所对应的时间区间,从而满足实际 需要同时在后期的发展中,只需调整卫星的相位关系即可满足方 案B的要求, 具有良好的可扩展性4.2.3连续覆盖星座设计方案在4. 2. 2节所设计的方案中,由于单颗卫星过顶的时间较短(一般10—20 min), 很难满足大业务量信息的传输要求,因此,设计能够实现对目标区域 较长时间 覆盖的卫星星座具有较大现实意义由于4颗卫星不可能完成对目标区域的实时 连续覆盖,为了尽可能增加星座每次覆盖时间,设定4颗卫星分布在同一轨道 平面上,通过调整卫星的近地点辐角差值使卫星能够实现前后协同,从而延长每 次覆 盖时间各卫星参数设置如表3所示轨道参数卫星轨道咼度/km轨道倾角 /(° )升交点赤经 /(° )近地点辐角/(° )Sa t114503812060Sa t214503812020Sa t3145038120340Sa t4145038120300表3卫星参数设置目标区域不变,通过仿真,可知:星座可以在一天内完成对目标区域的7次覆盖, 每次覆盖时间约80 min,可以实现较大业务量的信息传输,星座同样存在覆盖 集中时间区间,通过调整卫星的有关参数可以改变集中覆盖所对应的时间区间。
与4.2.2节中方案相比,该星座对目标区域的覆盖次数大大减少,并且存在一定 的覆盖空白区但是由于每次过顶时间较长,可以满足大业务量信息的不间断实 时传输经过对上述两种方案的对比可以发现,连续覆盖星座设计方案在实际 通信中可以满足信息的实时与大量传输,对于军队作战半径的扩展和保障需求 较为有利,具有较大的实用价值和应用价值5系统传输技术体制5・1调制方式本系统采用n / 4-QPSK调制机制QPSK(Quadrature Phase Shift Keying)正交相移键控,是一种数字调制方式 在数字信号的调制方式中QPSK四相移键控是目前最常用的一种卫星数字信号调 制方式,它具有较高的频谱利用率、较强的抗干扰性、在电路上实现也较为简单 但是,当QPSK进行脉冲成形(信号发送前的滤波,减小信号间干扰,将信号通 过设定滤波器实现)时,将会失去恒包络性质,偶尔发生的弧度为n的相移(当 码组0011或0110时,产生180°的载波相位跳变),会导致信号的包络在瞬时 通过零点任何一种在过零点的硬限幅或非线性放大,都将由于信号在低电压时 的失真而在传输过程中带来已被滤除的旁瓣为了防止旁瓣再生和频谱扩展,必 须使用效率较低的线性放大器来放大QPSK信号。
OQPSK是在QPSK基础上发展起 来的一种恒包络数字调制技术消除180°的相位跳变恒包络技术所产生的已 调波经过发送带限后,当通过非线性部件时,只产生很小的频谱扩展这种形式 的已调波具有两个主要特点,其一是包络恒定或起伏很小;其二是已调波频谱具 有高频快速滚降特性,或者说已调波旁瓣很小,甚至几乎没有旁瓣它与QPSK 有同样的相位关系,也是把输入码流分成两路,然后进行正交调制不同点在于 它将同相和正交两支路的码流在时间上错开了半个码元周期由于两支路码元半 周期的偏移,每次只有一路可能发生极性翻转,不会发生两支路码元极性同时翻 转的现象因此,OQPSK信号相位只能跳变0°、±90°,不会出现180°的相 位跳变本系统采用n / 4-QPSK调制,它是OQPSK和QPSK的折中,比PQSK有 更好的包络性质,它能够非相干解调,使接收机设计大大简化,在多径扩展和衰 落的情况下,n / 4-QPSK调制性能更好5.2多址接入方式OFDMA: OFDM正交频分复用结合CDMA码分多址OFDM将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流, 调制到在每个子信道上进行传输正交信号可以通过在接收端采用相关技术来分 开,这样可以减少子信道之间的相互干扰ICI。
每个子信道上的信号带宽小于 信道的相关带宽,因此每个子信道上的可以看成平坦性衰落,从而可以消除符号 间干扰而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变 得相对容易OFDM可以结合分集,时空编码,干扰和信道间干扰抑制技术,最 大限度的提高了系统性能OFDM中的各个载波是相互正交的,每个载波在一个 符号时间内有整数个载波周期,每个载波的频谱零点和相邻载波的零点重叠,这 样便减小了载波间的干扰由于载波间有部分重叠,所以它比传统的FDMA频分 多址技术提高了频带利用率但OFDM本身不具有多址能力,需要和其他的多址 技术,如TDMA、CDMA、FDMA等结合实现多址,本系统采用OFDM正交频分复用结 合CDM。
