
旋转知识点总结.docx
17页旋转知识点归纳知识点1:旋转的定义及其有关概念在平面内,将一个图形绕一个定点 0沿某个方向转动一个角度,这样的图形运动称为旋转, 定点0称为旋转中心,转动的角称为旋转角;如果图形上的点 P经过旋转到点P,那么这 两个点叫做这个旋转的对应点 •如图1,线段AB绕点0顺时针转动900得到A B ,这就是旋转,点0就是旋转中心,BOB , AOA都是旋转角说明:旋转的范围是在平面内旋转,否则有可能旋转为立体图形,因此“在平面内”这 一条件不可忽略•决定旋转的因素有三个:一是旋转中心;二是旋转角;三是旋转方向知识点2:旋转的性质由旋转的定义可知,旋转不改变图形的大小和形状,这说明旋转前后的两个图形是全等的•由此得到如下性质:⑴经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,对应点的排列次序相同•⑵任意一对对应点与旋转中心的连线所成的角都是旋转角 •⑶对应点到旋转中心的距离相等 •⑷对应线段相等,对应角相等 •例1、如图2,D是等腰Rt△ ABC内一点,BC是斜边,如果 将厶ADB绕点A逆时针方向旋转到△ AD C的位置,贝U ADD 的度数是( )DA. 25° B . 30° C. 35°分析:抓住旋转前后两个三角形的对应边相等、对应角相等等性质,本题就很容易解决 由厶AD C是由△ ADB旋转所得,可知△ ADB^A AD C ,「• AD= AD , / DAB:/ D AC, '/Z DAB/ DAC900 ,DAC+Z DAC900 , .•./ ADD 450,故选 D .0图形之间的全等关系,是解决与旋转有关问题的关键 •知识点3:旋转作图1. 明确作图的条件:(1)已知旋转中心;(2)已知旋转方向与旋转角.2. 理解作图的依据:(1)旋转的定义:在平面内,将一个图形绕一个定点 0沿某个方向转动一个角度的图形变换叫做旋转 ;(2)旋转的性质:经过旋转,图形上的每一点都绕旋转中心沿相同的方向转动了相同的角度 ,任意一对对应点与旋转中心的连线所组成的角都是旋转角对应点到旋转中心的距离相等 •3. 掌握作图的步骤:(1)分析题目要求,找出旋转中心、旋转角;(2)分析图形,找出构成 图形的关键点;(3)沿一定的方向,按一定的角度,通过截取线段的方法, 找出各个关键点;(4)连接作出的各个关键点,并标上字母; (5)写出结论.例2如图3,小明将△ ABC绕0点旋转得到△ ABC,其中点A、B、C分别是A B、 C的对应点.随即又将厶ABO的边AGBC及旋转中心0擦去(不留痕迹),他说他还能把旋转中 心0及厶ABC的位置找到,你认为可以吗?若可以,试确定旋转中心及的位置 ;如不可以,请说 明理由.分析:本题的关键是要学生先确定旋转中心的位置 .根据“对应点到旋转中心的距离相等”这一特征,可推断出旋转中心是对应点连线( AA和BB )的垂直平分线的交点.这样旋转中心就可以确定了,从而△ ABC勺位置也就可以确定了 .解:连接AA , BB,分别作AA , BB的垂直平分线,相交于 0点,贝U 0点即为旋转中 心.再作C关于点的对应点,连接,则的位置就确定了 .如图4所示.评注:旋转角相等及对应点到旋转中心的距离相等是解决这类问题的关键A图3BA考点4:钟表的旋转问题钟表的时针与分针每时每刻都以轴心为旋转中心作旋转运动,其中时针12小时旋转一周则每小时旋转36012300,这样时针每分钟旋转0.50;分针每小时旋转一周 ,则每分钟旋转060.36060例3从1点到1点25分,分针转了多少度角?时针转了多少度角?1点25分时时针与分 针的夹角是多少度?分析:从1点到1点25分,分针与时针都转了 25分钟,所以分针旋转的角度为60 25 1 500,时针旋转的角度为0.50 25 12.50;1点整的时候,分针与时针的夹角为 30°,分针与时针分别同时旋转 1500与12.50后,分针与时针的夹角为 15C0 3 00 1 2.50 1 07.50.解:分针旋转的角度为60 25 1 500;时针旋转的角度为0.50 25 12.50;分针与时针的夹角为1500 300 12.50 107.50.评注:(1)时针每分钟旋转0.5° ;(2)分针每分钟旋转60.这两个条件是旋转问题中的隐含条件,也是解决此类问题的突破口解读生活中的旋转一. 旋转及其基本性质1. 旋转的概念在平面内,将一个图形绕一个定点沿着某个方向转动一个角度 ,这样的图形运动称为旋转这个定点称为旋转中心,转动的角称为旋转角.2. 旋转的基本性质(1) 旋转前后两个图形的对应点到旋转中心的距离相等 ;(2) 对应点与旋转中心的连线所成的角彼此相等3. 理解旋转中的不变量图形旋转的主要因素是旋转的方向和旋转的角度 ,图形在旋转过程中,图形中的每一点都按同样的方向旋转了相同的角度 .图形在旋转后点的位置改变 ,但线段的长度不变,对应点到旋转中心的距离不变,每对对应点与旋转中心连线所成的角都相等总结 : 旋转过程中 ,每一个点都绕旋转中心沿相同的方向旋转了相同的角度 , 任意一对对应点与旋转中心的连线所成的角都是旋转角 , 对应点到旋转中心的距离相等 .二 . 旋转前后两个图形的比较图形是由点组成的 , 图形中的主要元素有线段和角 , 也有一些其他可度量的元素 , 所以从 这两个方面加以分析 . 旋转的特点有以下几个方面 :(1) 旋转前后两个图形的形状和大小没有发生改变 , 位置发生了改变 ;(2) 对应线段相等,对应角相等 ;(3) 每对对应点与旋转中心连线所成的角都是相等的,它们都是旋转角 .三 . 旋转作图1. 旋转作图的依据是 : 图形上的每一点都绕旋转中心沿相同方向转动了相同的角度 , 对应点到旋转中心的距离相等 .2. 旋转作图的条件(1) 图形原来所在的位置 ;(2) 旋转中心 ;(3) 图形旋转的方向 ;(4) 图形的旋转角度 .3. 旋转作图的具体步骤为 :(1) 分析题目的要求 , 找出旋转中心、旋转角;(2) 分析所作的图形,找出构造图形的关键点;(3) 沿一定的方向,按一定的角度,通过攫取线段的方法,旋转各个关键点。
① 连:即连图形中的每一个关键点与旋转中心;② 转:即把连线按要求绕旋转中心转过一定角度;③ 截:即在角的另一边上截取关键点到旋转中心的距离,得到各点的对应点;为了避免作图时的混乱,每个点独立完成后,再进行下一个点的旋转;(4) 连接所作的各个关键点,并标上相应的字母;(5) 写出结论(方格纸内作图可以略写结论) .四. 旋转作图的考查形式(1) 已知原图、旋转中心和一对对应点,求作旋转后的图形;(2) 已知原图、旋转中心和一对对应线段,求作旋转后的图形;(3) 已知原图、旋转中心和旋转角,求作旋转后的图形 .五 . 典例剖析例1如图1,D是等腰Rt△ ABC内一点,BC是斜边,如果将 △ ABD绕点A逆时针方向旋转到 △ ACD的位置,贝U ADD的度数是(D )A. 25°B . 30°C . 35°图1D. 45°解析:根据旋转性质可知△ ABD^A ACD ,:丄 BAD/ CAD , AD AD ,•••/ BAD/ CAD9O0 ,•••/ CAD +/ CAD9O0,1• ADD =—180° 9O0 450,故应选 D.2评注:本题应用旋转性质得到两三角形全等,然后根据全等三角形的性质和三角形内角图2和定理求解即可.例2如图2,该图形围绕自己的旋转中心,按下列角度旋转后, 不能与其自身重合的是( )A. 72° B . 108° C . 144° D. 216°解析:整个图形可以看作是图形的五分之一绕中心位置, 按照同一方向连续旋转72°、144°、216°、2880、360°和原来图形共同组成的,所以本题应选 B。
评注:解决本题的关键是通过动手操作和动脑分析,找到“基本图案”,并分析得到旋转角,对本题来说,只要找到了 “基本图案”,所有的旋转角一定都是 72°的倍数.例3在如图3的方格纸中,每个小方格都是边长为 1个单位的正方形, △ ABC的三个顶点都在格点上(每个小方格的顶点叫格点)(1)画出△ ABC向平移4个单位后的 △ A1B1C1 ;(2)画出△ ABC绕点O顺时针旋转90°后的△ A2B2C2,并求点A旋转到A所经过的路线长.分析:在作图的时候要找到关键点的位置,本题有两步作图,第一步是平移,第二步是旋转,按照平移和旋转的作图步骤容易得到最后的图点A旋转到A2所经过的路线长为以 OA为半径,圆心角为90°的弧长.解:(1)画出△ A1B1C1 . (2)画出△ AB2C2 .连结 OA, OA , OA . 22 32 13 .点A旋转到A2所经过的路线长为90 .13 13180 〒(3)若P是AC的中点,那么经过上述旋转后,点 P旋转到了什么位置?评注:在方格纸上作简单的旋转图形图1度.,旋转角度通常是 90°,这样旋转前后图形的对应点与旋转中心的连线互相垂直,实际上就是在方格纸上找垂线,再根据旋转的性质找线段相等,从而确定每个对应点.学好旋转的三个要点旋转在实际生活中随处可见•因此,学好旋转的知识有利于我们解决实际问题,学习时应注意把握好以下几点:、正确理解旋转的概念在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为 旋转,这个定点叫做旋转中心.旋转不改变图形的形状和大小.理解这个概念应注意以下两点:1•旋转和平移一样,是图形的一种基本变换;2 .图形旋转的决定因素是旋转中心和旋转的角例如图1 , △ ABC是等腰直角三角形,AB AC,/ BAC 90 , D是BC上一点,△ ACD经过旋转后到达 △ ABE的位置.(1)旋转中心是哪一点?(2 )旋转了多少度?解:(1)点A是旋转中心;(2) 顺时针旋转了 90 ;(3) 点P旋转到了 AB的中点.二、掌握旋转的特征 图形中每一点都绕着旋转中心旋转了同样大小的角度;对应点到旋转中心的距离相等,对应线段、对应角都相等;旋转前后图形的大小、形状都不发生变化.例2如图2所示,是国际奥林匹克运动会会旗(五环旗) 的标志图案,它是由五个半径相同的圆组成的,它象征着五大洲的 体育健儿,为发展奥林匹克精神而团结起来,携手拼搏.观察此图 案,结合我们所学习的图形变换知识,完成下列题目:(1) 整个图案可以看做是什么图形?(2) 此图案可以看做是把一个圆经过多次什么变换运动得到的?解:(1)这个图案是轴对称图形.(2)既可以看做是由一个圆经过 4次平移得到的,又可以看做是一个圆经过 4次旋转得到的(你能分析吗,提示:旋转中心可以不在图案上)三、会寻找旋转中心 知道了旋转中心及旋转角,可以作出一个图形旋转后的图形.那么知道一个图形及其旋转后的图形时,如何确定旋转中心呢?确定旋转中心的关键是确定两个图形上的两组对应点构成的对应线段的旋转中心,由旋转特征可知,这两组对应点的旋转中心就是整个图形的旋转中心.由旋转特征可知,如果已知图形上点 A关于旋转中心 0的对应点是 A,则有OA 0A,所以点0必段AA的垂直平分线上;如果图形上点 B关于旋转中心 0的对应点是B,则OB 0B,所以点。












