好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2023年高中数学必修二知识点大全.doc

40页
  • 卖家[上传人]:re****.1
  • 文档编号:395208988
  • 上传时间:2023-02-11
  • 文档格式:DOC
  • 文档大小:2.20MB
  • / 40 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 知识点串讲 必修二第一章:空间几何体§1.1.1 棱柱、棱锥、棱台的结构特性1、由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面,如面ABCD;相邻两个面的公共边叫多面体的棱,如棱AB;棱与棱的公共点叫多面体的顶点,如顶点A.2、由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫旋转体,这条定直线叫旋转体的轴. 3、一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱(prism).棱柱中,两个互相平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.(两底面之间的距离叫棱柱的高)4、有一个面是多边形,其余各个面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.顶点到底面的距离叫做棱锥的高;棱锥也可以按照底面的边数分为三棱锥(四周体)、四棱锥…等等,棱锥可以用顶点和底面各顶点的字母表达5、用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分形成的几何体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面.其余各面是棱台的侧面,相邻侧面的公共边叫侧棱,侧面与两底面的公共点叫顶点.两底面间的距离叫棱台的高.棱台可以用上、下底面的字母表达,分类类似于棱锥.6、例 由棱柱的定义你能得到棱柱下列的几何性质吗?①侧棱都相等,侧面都是平行四边形;②两个底面与平行于底面的截面是全等的多边形;③过不相邻的两条侧棱的截面是平行四边形.仿照棱柱,棱锥、棱台有哪些几何性质呢?7、知识拓展1. 平行六面体:底面是平行四边形的四棱柱; 2. 正棱柱:底面是正多边形的直棱柱;3. 正棱锥:底面是正多边形并且顶点在底面的射影是底面正多边形中心的棱锥;4. 正棱台:由正棱锥截得的棱台叫做正棱台.8、已知集合A={正方体},B={长方体},C={正四棱柱},D={直四棱柱},E={棱柱},F={直平行六面体},则(  ).A. B.C. D.它们之间不都存在包含关系§1.1.2 圆柱、圆锥、圆台、球及简朴组合体的结构特性1、以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体,叫做圆柱(circular cylinder),旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线圆柱用表达它的轴的字母表达,图中的圆柱可表达为.圆柱和棱柱统称为柱体.2、以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫圆锥.圆锥也用表达它的轴的字母表达.棱锥与圆锥统称为锥体.3、直角梯形以垂直于底边的腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫圆台(frustum of a cone).棱台与圆台统称为台体.4、以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体(solid sphere),简称球;半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径;球通常用表达球心的字母表达,如球.5、由具有柱、锥、台、球等简朴几何体组合而成的几何体叫简朴组合体.现实生活中的物体大多是简朴组合体.简朴组合体的构成有两种方式:由简朴几何体拼接而成;由简朴几何体截去或挖去一部分而成.6、知识拓展圆柱、圆锥的轴截面:过圆柱或圆锥轴的平面与圆柱或圆锥相交得到的平面形状,通常圆柱的轴截面是矩形,圆锥的轴截面是三角形.7、一个球内有一内接长方体,其长、宽、高分别为5、4、3,则球的直径为( ).A. B. C. D.8、圆锥母线长为,侧面展开图圆心角的正弦值为,则高等于__________.§1.2.1 中心投影与平行投影§1.2.2 空间几何体的三视图1、由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中光线叫投影线,留下物体影子的屏幕叫投影面.光由一点向外散射形成的投影叫做中心投影,中心投影的投影线交于一点.在一束平行光照射下形成的投影叫做平行投影,平行投影的投影线是平行的.在平行投影中,投影线正对着投影面时叫正投影,否则叫斜投影. 2、结论:中心投影其投影的大小随物体与投影中心间距离的变化而变化;平行投影其投影的大小与这个平面图形的形状和大小是完全相同的.3、为了能较好把握几何体的形状和大小,通常对几何体作三个角度的正投影.一种是光线从几何体的前面向后面正投影得到投影图,这种投影图叫几何体的正视图;一种是光线从几何体的左面向右面正投影得到投影图,这种投影图叫几何体的侧视图;第三种是光线从几何体的上面向下面正投影得到投影图,这种投影图叫几何体的俯视图.几何体的正视图、侧视图和俯视图称为几何体的三视图.一般地,侧视图在正视图的右边,俯视图在正视图的下边.三视图中,能看见的轮廓线和棱用实线表达,不能看见的轮廓线和棱用虚线表达. 下图是一个长方体的三视图.俯视图侧视图正视图4、小结:1.正视图反映物体的长度和高度,俯视图反映的是长度和宽度,侧视图反映的是宽度和高度;2.正视图和俯视图高度相同,俯视图和正视图长度相同,侧视图和俯视图宽度相同;3.三视图的画法规则:①正视图、侧视图齐高,正视图、俯视图长对正,俯视图、侧视图宽相等,即“长对正”、“高平齐”、“宽相等”;②正、侧、俯三个视图之间必须互相对齐,不能错位.5、 下列哪种光源的照射是平行投影( ).A.蜡烛 B.正午太阳 C.路灯 D.电灯泡6、 右边是一个几何体的三视图,则这 个几何体是( ). A.四棱锥B.圆锥C.三棱锥D.三棱台7、 如图是个六棱柱,其三视图为( ).A. B. C. D. §1.2.3 空间几何体的直观图1、斜二测画法的规则及环节如下:(1)在已知水平放置的平面图形中取互相垂直的轴和轴,建立直角坐标系,两轴相交于.画直观图时,把它们画成相应的轴与轴,两轴相交于点,且使°(或°).它们拟定的平面表达水平面;(2) 已知图形中平行于轴或轴的线段,在直观图中分别画成平行于轴或轴的线段;(3)已知图形中平行于轴的线段,在直观图中保持原长度不变,平行于轴的线段,长度为本来的一半;(4) 图画好后,要擦去轴、轴及为画图添加的辅助线(虚线).2、用斜二测画法画空间几何体的直观图时,通常要建立三条轴:轴,轴,轴;它们相交于点,且°,°;空间几何体的底面作图与水平放置的平面图形作法同样,即图形中平行于轴的线段保持长度不变,平行于轴的线段长度为本来的一半,但空间几何体的“高”,即平行于轴的线段,保持长度不变.3、用斜二测画法画底面半径为4,高为3的圆柱.4、一个长方体的长、宽、高分别是4、8、4,则画其直观图时相应为( ).A. 4、8、4 B. 4、4、4 C. 2、4、4 D.2、4、25、 运用斜二测画法得到的①三角形的直观图是三角形②平行四边形的直观图是平行四边形③正方形的直观图是正方形④菱形的直观图是菱形,其中对的的是( ). A.①② B.① C.③④ D.①②③④6、一个三角形的直观图是腰长为的等腰直角三角形,则它的原面积是( ). A. 8 B. 16 C. D.327、等腰梯形ABCD上底边CD=1,腰AD=CB=, 下底AB=3,按平行于上、下底边取x轴,则直观图的面积为________.§1.3.1 柱体、锥体、台体的表面积与体积(1)1、(1)设圆柱的底面半径为,母线长为,则它的表面积等于圆柱的侧面积(矩形)加上底面积(两个圆),即.(2)设圆锥的底面半径为,母线长为,则它的表面积等于圆锥的侧面积(扇形)加上底面积(圆形),即.2、设圆台的上、下底面半径分别为,,母线长为,则它的表面积等上、下底面的面积(大、小圆)加上侧面的面积(扇环),即.3、正方体的表面积是64,则它对角线的长为( ). A. B. C. D.4、一个圆柱的侧面展开图是一个正方形,这个圆柱的表面积与侧面积的比是( ). A. B. C. D.5、一个正四棱台的两底面边长分别为,,侧面积等于两个底面积之和,则这个棱台的高为( ).A. B. C. D. 6、如图,在长方体中,,,,且,求沿着长方体表面到的最短路线长.7、柱体体积公式为:,(为底面积,为高)锥体体积公式为:,(为底面积,为高)台体体积公式为: (,分别为上、下底面面积,为高)8、补充:柱体的高是指两底面之间的距离;锥体的高是指顶点到底面的距离;台体的高是指上、下底面之间的距离.9、如图(1)所示,三棱锥的顶点为,是它的三条侧棱,且分别是面的垂线,又,,求三棱锥的体积.图(1)10、如图(2),在边长为4的立方体中,求三棱锥的体积.图(2)11、在△中,°,若将△绕直线旋转一周,求所形成的旋转体的体积.§1.3.2 球的体积和表面积1、球的体积公式 球的表面积公式 其中,为球的半径.显然,球的体积和表面积的大小只与半径有关.2、若三个球的表面积之比为﹕﹕,则它们的体积之比为多少?3、如图,圆柱的底面直径与高都等于球的直径(即圆柱内有一内切球),求证(1)球的体积等于圆柱体积的;(2)球的表面积等于圆柱的侧面积.4、记与正方体各个面相切的球为,与各条棱相切的球为,过正方体各顶点的球为则这3个球的体积之比为( ). A.1:2:3 B.1:: C.1:: D.1:4:9第二章:点线面的位置关系§2.1.1 平面 1、平面(plane)是平的;平面是可以无限延展的;平面没有厚薄之分.2、⑴点在平面内,记作;点在平面外,记作.⑵点在直线上,记作,点在直线外,记作.⑶直线上所有点都在平面内,则直线在平面内(平面通过直线),记作;否则直线就在平面外,记作.3、公理1 假如一条直线上的两点在一个平面内,那么这条直线在此平面内.用集合符号表达为:且公理2 过不在一条直线上的三点,有且只有一个平面. 公理3假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.如下图所示:平面与平面相交于直线,记作.公理3用集合符号表达为且,且4、知识拓展平面的三个性质是公理(不需要证明,直接可以用),是用公理化方法证明命题的基础.其中公理可以用来判断直线或者点是否在平面内;公理用来拟。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.