好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

不确定性原理的前世今生.docx

10页
  • 卖家[上传人]:桔****
  • 文档编号:528570917
  • 上传时间:2023-07-19
  • 文档格式:DOCX
  • 文档大小:324.99KB
  • / 10 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 不确定性原理的前世今生•数学篇在现代数学中有一个很容易被外行误解的词汇:信号(signal)当数学家们说起「一个信 号」的时候,他们脑海中想到的并不是交通指示灯所发出的闪烁光芒或者屏幕顶部的天 线图案,而是一段可以具体数字化的信息,可以是声音,可以是图像,也可是遥感测量数据 简单地说,它是一个函数,定义在通常的一维或者多维空间之上譬如一段声音就是一个定 义在一维空间上的函数,自变量是时间,因变量是声音的强度,一幅图像是定义在二维空间 上的函数,自变量是横轴和纵轴坐标,因变量是图像像素的色彩和明暗,如此等等在数学上,关于一个信号最基本的问题在于如何将它表示和描述出来按照上面所说的办法, 把一个信号理解成一个定义在时间或空间上的函数是一种自然而然的表示方式,但是它对理 解这一信号的内容来说常常不够例如一段声音,如果单纯按照定义在时间上的函数来表示,这通常被称为波形图毫无疑问,它包含了关于这段声音的全部信息但是同样毫无疑问的 是,这些信息几乎没法从上面这个「函数」中直接看出来,事实上,它只不过是巴赫的小提 琴无伴奏 Partita No.3 的序曲开头几个小节下面是巴赫的手稿,从某种意义上说来,它 也构成了对上面那段声音的一个「描述」:这两种描述之间的关系是怎样的呢?第一种描述刻划的是具体的信号数值,第二种描述刻划 的是声音的高低(即声音震动的频率)。

      人们直到十九世纪才渐渐意识到,在这两种描述之 间,事实上存在着一种对偶的关系,而这一点并不显然1807 年,法国数学家傅立叶 (J. Fourier) 在一篇向巴黎科学院递交的革命性的论文Memoiresur la propagation de la chaleurdans les corps solides (《固体中的热传 播》)中,提出了一个崭新的观念:任何一个函数都可以表达为一系列不同频率的简谐振动(即简单的三角函数)的叠加有趣的是,这结论是他研究热传导问题的一个副产品这篇论文经拉格朗日(J. Lagrange)、拉普拉斯(P-S. Laplace)和勒让德(A-M. Legendre) 等人审阅后被拒绝了,原因是他的思想过于粗糙且极不严密1811 年傅立叶递交了修改后 的论文,这一次论文获得了科学院的奖金,但是仍然因为缺乏严密性而被拒绝刊载在科学院 的《报告》中傅立叶对此耿耿于怀,直到1824 年他本人成为了科学院的秘书,才得以 把他 1811 年的论文原封不动地发表在《报告》里用今天的语言来描述,傅立叶的发现实际上是在说:任何一个信号都可以用两种方式来表达, 一种就是通常意义上的表达,自变量是时间或者空间的坐标,因变量是信号在该处的强度, 另一种则是把一个信号「展开」成不同频率的简单三角函数(简谐振动)的叠加,于是这就 相当于把它看作是定义在所有频率所组成的空间(称为频域空间)上的另一个函数,自变量 是不同的频率,因变量是该频率所对应的简谐振动的幅度。

      这两个函数一个定义在时域(或空域)上,一个定义在频域上,看起来的样子通常截然不同, 但是它们是在以完全不同的方式殊途同归地描述着同一个信号它们就象是两种不同的语言, 乍一听完全不相干,但是其实可以精确地互相翻译在数学上,这种翻译的过程被称为「傅 立叶变换」傅立叶变换是一个数学上极为精美的对象:• 它是完全可逆的,任何能量有限的时域或空域信号都存在唯一的频域表达,反之亦然• 它完全不损伤信号的内在结构:任何两个信号之间有多少相关程度(即内积),它们的频 域表达之间也一定有同样多的相关程度• 它不改变信号之间的关联性:一组信号收敛到一个特定的极限,它们的频域表达也一定收 敛到那个极限函数的频域表达傅立叶变换就象是把信号彻底打乱之后以最面目全非的方式复述出来,而一切信息都还原封 不动的存在着要是科幻小说作家了解这一点,他们本来可以多出多少有趣的素材啊在傅立叶变换的所有这些数学性质中,最不寻常的是这样一种特性:一个在时域或空域上看 起来很复杂的信号(譬如一段声音或者一幅图像)通常在频域上的表达会很简单这里「简 单」的意思是说作为频域上的函数,它只集中在很小一块区域内,而很大一部分数值都接近 于零。

      例如下图是一张人脸和它对应的傅立叶变换,可以看出,所有的频域信号差不多都分 布在中心周围,而大部分周边区域都是黑色的(即零)这是一个意味深长的事实,它说明一个在空域中看起来占满全空间的信号,从频域中看起来 很可能只不过占用了极小一块区域,而大部分频率是被浪费了的这就导出了一个极为有用 的结论:一个看起来信息量很大的信号,其实可以只用少得多的数据来加以描述只要对它 先做傅里叶变换,然后只记录那些不接近零的频域信息就可以了,这样数据量就可以大大减 少基本上,这正是今天大多数数据压缩方法的基础思想在互联网时代,大量的多媒体信息需 要在尽量节省带宽和时间的前提下被传输,所以数据压缩从来都是最核心的问题之一而今 天几乎所有流行的数据压缩格式,无论是声音的 mp3 格式还是图像的 jpg 格式,都是利 用傅立叶变换才得以发明的从这个意义上说来,几乎全部现代信息社会都建立在傅立叶的 理论的基础之上这当然是傅立叶本人也始料未及的待续)傅立叶变换这种对偶关系的本质,是把一块信息用彻底打乱的方式重新叙述一遍正如前面 所提到的那样,一个信号可能在空域上显得内容丰富,但是当它在频域上被重新表达出来的 时候,往往就在大多数区域接近于零。

      反过来这个关系也是对称的:一个空域上大多数区域 接近于零的信号,在频域上通常都会占据绝大多数频率Imagethe Fourier Transform有没有一种信号在空域和频域上的分布都很广泛呢?有的,最简单的例子就是噪声信号一 段纯粹的白噪声,其傅立叶变换也仍然是噪声,所以它在空域和频域上的分布都是广泛的 如果用信号处理的语言来说,这就说明「噪声本身是不可压缩的」这并不违反直觉,因为 信号压缩的本质就是通过挖掘信息的结构和规律来对它进行更简洁的描述,而噪声,顾名思 义,就是没有结构和规律的信号,自然也就无从得以压缩另一方面,有没有一种信号在空域和频域上的分布都很简单呢?换句话说,存不存在一个函 数,它在空间上只分布在很少的几个区域内,并且在频域上也只占用了很少的几个频率呢? (零函数当然满足这个条件,所以下面讨论的都是非零函数答案是不存在这就是所谓的uncertainty principle (不确定性原理)这一事实有极为重要的内涵,但是其重要性并不容易被立刻注意到它甚至都不是很直观: 大自然一定要限制一个信号在空间分布和频率分布上都不能都集中在一起,看起来并没有什 么道理啊这个原理可以被尽量直观地解释如下:所谓的频率,本质上反应的是一种长期的全局的趋势, 所以任何一个单一的频率,一定对应于一个在时空中大范围存在的信号。

      反过来,任何只在 很少一块时空的局部里存在的信号,都存在很多种不同的长期发展的可能性,从而无法精确 推断其频率让我们仍然用音乐来作例子声音可以在时间上被限制在一个很小的区间内,譬如一个声音 只延续了一刹那声音也可以只具有极单一的频率,譬如一个音叉发出的声音(如果你拿起 手边的固定,里面的拨号音就是一个 440Hz 的纯音加上一个 350Hz 的纯音,相当 于音乐中的 A-F 和弦)但是不确定性原理告诉我们,这两件事情不能同时成立,一段声 音不可能既只占据极短的时间又具有极纯的音频当声音区间短促到一定程度的时候,频率 就变得不确定了,而频率纯粹的声音,在时间上延续的区间就不能太短因此,说「某时某 刻那一刹那的一个具有某音高的音」是没有意义的这看起来像是一个技术性的困难,而它实际上反映出却是大自然的某种本质规律:任何信息 的时空分辨率和频率分辨率是不能同时被无限提高的一种波动在频率上被我们辨认得越 精确,在空间中的位置就显得越模糊,反之亦然这一规律对于任何熟悉现代多媒体技术的人来说都是熟知的,因为它为信号处理建立了牢不 可破的边界,也在某种程度上指明了它发展的方向既然时空分辨率和频率分辨率不能同时 无限小,那人们总可以去研究那些在时空分布和频率分布都尽量集中的信号,它们在某种意 义上构成了信号的「原子」,它们本身有不确定性原理所允许的最好的分辨率,而一切其他 信号都可以在时空和频率上分解为这些原子的叠加。

      这一思路在四十年代被D. Gab or (他 后来因为发明全息摄影而获得了 1971 年的诺贝尔物理奖)所提出,成为整个现代数字信 号处理的奠基性思想,一直影响到今天但是众所周知,不确定性原理本身并不是数学家的发明,而是来自于量子物理学家的洞察力 同样一条数学结论可以在两个截然不相干的学科分支中都产生历史性的影响,这大概是相当 罕见的例子了待续)不确定性原理事实上不是一个单独的定理,而是一组定理的统称基本上,凡是刻划一个信 号不能在时空域和频域上同时过于集中的命题都可以称为不确定性原理,由于这里「集中」 这一性质可以有不同的数学描述,也就对应着不同的数学定理但是在所有冠以「不确定性 原理」之名的定理中,最著名的当然是海森堡(W. Heisenberg)在1927年所提出的影 响物理学发展至深的那个版本它精确的数学描述是:假定一个信号的总能量为1,则这个信号和它的傅立叶变换的能量的方差之积不小于 1/I6n2换言之,两者各自的能量都可能很集中,但是不能同时很集中如果时空域中能量的方差很 小(亦即集中在一起),那么频域上能量的方差就不会太小(亦即必然会弥散开),反之亦 然对这个定理在量子物理中的意义的详细讨论超出了本文的话题范围,坊间相关的著作已有不少。

      不过,下面简单胪列了一些相关的历史事实:• 海森堡在1927年的那篇文章标题为Ueber den anschaulichenlnhalt der quantentheoretischenKinematik und Me c h a n i k (《量子理论运动学和力学的直观内 容》)这篇文章很大程度上是对薛定谔(E. Schrodinger)在1926年所提出的薛定 谔波动方程的回应相较于海森堡的矩阵力学而言,薛定谔的方程很快由于它物理上的直 观明晰而吸引了越来越多物理学家的赞赏海森堡对此极为失落在 1926 年 6 月 8 日 海森堡写给泡利 (W. Pauli) 的信中他说:「我对薛定谔的理论想得越多我就越觉得恶心」 因此,他迫切需要给他自己的理论配上一幅更直观的图象• 海森堡的这篇文章提出了后来被人们所熟悉的关于为什么无法同时测量一个电子的位置和 动量的解释,但是并未给出任何严格的数学证明他把他的结论笼统地表达为AxAp > h 其中x是位置,p是动量,h是普朗克常数但他并没有详细说明\x和Ap的严格意思, 只针对若干具体情形做了一些直观的讨论• 第一个从数学上证明不确定性原理的物理学家是E. Kennard。

      他在1927年证明了文章 开头所描述的定理,指出 Ax 和 Ap 的数学意义其实是方差这种解释很快就成了海森堡不 确定性原理的标准数学表达,海森堡本人 1930 年在芝加哥所做的演讲中也使用了这种数 学推导来佐证他的立论需要说明的是,海森堡尽管很快接收了这一数学解释,但是后来 人们发现在他本人原先的论文里所举的那些例子中,有很多被他用 Ax 和 Ap 笼统概括的含 混概念其实是无法被解释成方差的在他心目中,不确定性原理首先是一个经验事实,其 次才是一个数学定理• 海森堡并未将他的发现命名为不确定性「原理」,而只是称之为一种「关系」爱丁顿 (A. Eddington) 在 1928 年似乎第一个使用了原理一词,将之称为 principle ofin determi nacy,后来 un ce。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.