
2022年导数压轴题汇编.docx
2页2022年导数压轴题汇编 2022全国各地导数压轴题汇编 1、(2022年全国卷I理数) 已知函数2 )1()2()(-+-=x a e x x f x 有两个零点 (I )求a 的取值范围 (II )设21,x x 是)(x f 的两个零点,求证:2210时,(2)20;x x e x -++> (II )证明:当[0,1)a ∈ 时,函数2x =(0)x e ax a g x x -->() 有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域. 4、(2022年全国卷II 文数) 已知函数()(1)ln (1)f x x x a x =+--. (I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (II)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 5、(2022年全国卷III 理数) 设函数)1)(cos 1(2cos )(+-+=x a x a x f 其中a >0,记|)(|x f 的最大值为A 2022全国各地导数压轴题汇编 1、(2022年全国卷I理数) 已知函数2 )1()2()(-+-=x a e x x f x 有两个零点 (I )求a 的取值范围 (II )设21,x x 是)(x f 的两个零点,求证:2210时,(2)20;x x e x -++> (II )证明:当[0,1)a ∈ 时,函数2x =(0)x e ax a g x x -->() 有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域. 4、(2022年全国卷II 文数) 已知函数()(1)ln (1)f x x x a x =+--. (I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (II)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 5、(2022年全国卷III 理数) 设函数)1)(cos 1(2cos )(+-+=x a x a x f 其中a >0,记|)(|x f 的最大值为A 。












