好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

FleRay总线网络管理策略.docx

4页
  • 卖家[上传人]:pu****.1
  • 文档编号:390886776
  • 上传时间:2023-12-17
  • 文档格式:DOCX
  • 文档大小:14.20KB
  • / 4 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • FlexRay 总线网络管理策略车载网络管理的重要作用是协调网络中的节点同步进入睡眠状态此外,车载网络管理 还应具备网络监测和诊断、网络配置管理的作用FlexRay总线协议是FlexRay联盟(FlexRay Consortium)制定的适用于汽车高速网络 的新一代车载总线,具备高传输速率、硬实时、安全性和灵活性的特点FlexRay联盟目前 只规定了物理层协议和数据链路层协议,没有制定网络管理方面的标准FlexRay 总线协议特性分析(1) 通信机制确定性FlexRay总线采用周期通信的方式,一个通信周期(Communication Cycle)可以划分为 静态部分、动态部分、特征窗(SW, Symbol Window)和网络空闲时间(NIT, Network Idle Time)4个部分(图1)静态部分和动态部分用来传输总线数据,即FlexRay报文特征窗 用来发送唤醒特征符(WUS, Wake Up Symbol)和媒介访问检测特征符(MTS, Media Access Test Symbol)o网络空闲时间用来实现分布式的时钟同步和节点参数的初始化FlexRay总 线所有节点的通信周期必须保持同步。

      图1: FlexRay通信周期示例FlexRay 节点如果通过发送网络管理协议数据单元( NMPDU, Network Management Protocol Data Unit)进行网络管理,NMPDU可以在静态部分或动态部分周期性传输而NMPDU 发送的允许或禁止由节点网络管理状态决定,因此所有FlexRay节点的网络管理状态转换必 须在通信周期的间隔处执行然而, FlexRay 总线的通信周期为全局时间,在总线运行过程 中会根据部分节点的时间进行实时调整,所以网络管理状态转换不能以内部定时器的方式实 现,必须使用计数器的方式配合总线通信周期实现,才能满足所有节点同步转换的要求 2)通信调度灵活性FlexRay总线在一个通信周期采用了两种接入时序:静态部分采用时分多址(TDMA,Time DivisionMultiple Access)的接入时序,动态部分采用柔性时分多址(FTDMA,Flexible TDMA) 的接入时序图1)静态部分将通信时间划分为多个等时长的静态时隙(StaticSlot),不 同帧ID的静态帧在相应ID的时隙内发送,实现了报文发送的确定性动态部分将通信时间 划分为多个等时长的微时隙(Mini Slot),不同帧ID的动态帧在相应ID的动态时隙(Dynamic Slo t)内发送。

      一个动态时隙可以占用一个或多个微时隙,动态帧的发送时间并不确定,根 据动态部分的负载情况可能延后发送,甚至延后到下一周期在双信道传输时,两个信道的 动态帧的传输时间也可能不同动态帧的使用有效地提高了总线的实际带宽,适用于发送对 实时性要求不高的事件型报文,例如诊断报文、标定报文FlexRay总线的NMPDU需要根据静态帧和动态帧的特点,选择合适的发送方式静态帧 能够实现严格的周期性发送,但是静态帧的资源受限——出于安全性的考虑,同 一 ID的静态时隙只能分配给一个节点所以,使用静态帧发送NMPDU需要考虑网络的资源情 况而同一 ID的动态时隙可以分配给多个节点,以提高总线的利用率,但是动态帧要考虑总 线实际负载情况造成的发送延时 3 )应用层硬件支持FlexRay总线协议的数据帧包含起始段(Header Segment)、净荷段(Payload Segment) 和结束段(Trailer Segment)(图2)起始段中的净荷段指示位(Payload Preamble Indicator) 指出在净荷段开头是否包含可选变量如果是静态帧,此位置1 时表示净荷段首先发送网络 管理向量(NMVec tor),长度为0-12字节(所有节点NMVec tor长度相同);如果是动态帧, 此位置1时表示净荷段首先发送消息标识符(Message ID),长度为2字节。

      图 2 : FlexRay 数据帧结构FlexRay 协议规定了净荷段可选变量由数据链路层实现自动写入和读取的服务,由 FlexRay 通信控制器芯片实现该功能,以简化软件并提高读取速率如果使用静态帧的 NM Vector发送NMPDU,接收节点可以通过读取NM Vector寄存器,快速识别多个节点的网络请 求,从而有效提高信息的更新速率FlexRay 总线网络管理需求车载网络管理的重要作用是协调网络中的节点同步进入睡眠状态,适合FlexRay总线的 网络管理除了要求实现网络管理的功能外,还需要:(1)采用分布式网络管理方式FlexRay 总线协议适用于分布式控制网络,在通信调度表的实现和时钟同步方面均采用 了分布式的控制方式,即网络中不存在Mas ter或Slave节点因此FlexRay总线也须采用分 布式的网络管理机制,即每个总线节点独立的执行其网络管理行为,状态转换基于自身的网 络请求条件和接收的 NMPDU2) 通过周期性报文发送NMPDU由于FlexRay总线采用确定性通信方式,网络节点的所有报文需要按照通信调度发送和 接收任何通信调度表设计之外的报文均有可能占用分配给其它节点的总线时间,从而破坏 总线通信。

      所以,FlexRay总线不支持事件触发的非确定性报文,NMPDU必须通过周期性报文 在确定的时间发送艮据实际网络要求,网络管理周期可以设为FlexRay通信周期的整数倍, 每个节点在一个网络管理周期内发送其NMPDU 一次3) 节点的网络管理状态转换和NM-Task必须与FlexRay通信周期配合执行由于 FlexRay 总线采用周期通信的方式, FlexRay 节点的网络管理状态转换必须在 FlexRay通信周期的间隔处执行,NM-Task的执行需要在上一周期所有其它节点的NMPDU接收 完成和下一周期发送本节点NMPDU之前完成然而,FlexRay总线的全局时间每两个通信周 期调整一次,所以上述二者不能采用定时器方式执行,必须与FlexRay通信周期配合执行, 以实现网络范围的同步执行4) 艮据两种接入时序的特点,灵活使用静态帧与动态帧FlexRay 静态帧严格按照报文周期发送,但是静态帧会占用一个静态时隙如果所有 NMPDU 均占用一个静态时隙并且其发送周期远大于通信周期,则造成了带宽的浪费而一个 动态帧ID可以分配给多个节点,不同节点的NMPDU可以通过设定相同的帧ID,不同的循环 计数值(Cycle Counter)在多个通信周期的相同动态时隙发送,有效的提高了带宽利用率。

      实际上,帧ID最小的动态帧同样可以满足严格周期性发送所以,静态帧和动态帧均可以用 来发送NMPDU,需考虑网络和节点通信的实际情况灵活使用5) 合理利用静态帧的 NM Vector在FlexRay静态帧中使用NM Vector可以显著的提高网络管理信息的更新速率,但是NM Vector的长度为0-12字节,且要求所有节点长度相同如果NM Vector长度较短,如1-2 字节,则可以同应用报文合并一起发送,以避免带宽的浪费所以,可在NM Vector中只发 送关于节点地址、网络请求状态的信息,使用动态帧发送NMPDU中可选的用户数据(User Data)OSEK网络管理协议OSEK网络管理可以监控网络中每个节点的状态,向上层软件提供当前网络的配置,并使 网络中的节点能够协商进入睡眠状态OSEK网络管理采用分布式网络管理方式,定义了两种 网络管理机制:直接网络管理和间接网络管理1. 直接网络管理直接网络管理使用特定的网络管理报文,利用令牌环机制监控网络网络中,每个节点 都有一个后继节点,逻辑环的第一个节点是该逻辑环最后一个节点的后继节点,从而所有节 点组成一个逻辑环直接网络管理要求网络中所有的节点参与网络管理并分配唯一的静态节 点地址。

      节点通过发送NMPDU进行网络管理,OSCK NMPDU举例图 3:OSEK NMPDU 举例节点通过发送Alive报文建立令牌环,功能正常的节点发送周期性(周期TTYP)的Ring 报文指示该节点的功能正常,功能不正常的节点发送周期性(周期TError)的Limphome报 文指示该节点的跛行状态请求网络睡眠的节点将NMPDU中的Sleep.Ind置1并发送请求, 逻辑环中最后一个节点同意睡眠后发送Sleep.Ack置1的NMPDU所有节点接收到Sleep.Ack 置1的NMPDU后,等待相同时间(TWaitBussleep)后转至睡眠状态相应的,OSEK直接网络管理的网络状态分为NMAwake状态和NMBusSleep状态在NMAwake 状态下按照网络配置区分为NMNormal子状态和NMLimphome子状态网络状态间的转换基于 内部定时器及不同类型NMPDU文的接收2. 间接网络管理间接网络管理不需要NMPDU,而是通过监控节点的周期性应用报文,实现网络的监控 节点发送的周期性应用报文被成功接收即被认为,在预定时间内没有被成功接收即被认 为离线间接网络管理不需要网络中的所有节点分配网络管理报文ID,较直接网络管理简单 灵活,网络开销小。

      但是对于应用上只需要接收网络报文或只发送事件触发报文的节点需要 增加专门的周期性报文OSEK网络管理虽然没有指定总线类型,但是其特性决定了其只适合于事件触发的总线协 议,如CAN总线,而不能用于FlexRay总线协议,因为:节点网络管理状态的转换和NM-Task 的执行基于定时器的超时,无法与FlexRay通信周期同步;直接网络管理采用令牌环机制, 与 FlexRay 报文的确定性发送方式不符此外OSEK网络管理没有考虑FlexRay总线的不同接入时序、硬件支持和双通道通信等特 点AUTOSAR 网络管理协议AUTOSAR组织提出了标准化的软件平台及不同总线协议的网络管理规范AUTOSAR网络管 理使用分布式的直接网络管理机制,网络状态转换基于节点请求网络的状态及周期性 NMPDU 的接收节点接收到一个广播发送的NMPDU表明发送节点意图保持网络的唤醒状态如果某 节点准备进入总线睡眠状态,则停止发送NMPDU,但只要接收到其它节点发送的NMPDU,就推 迟总线睡眠模式的转换最终,如果节点因为接收不到NMPDU而使预设的时间(FlexRay通 信周期计数器)溢出,节点便进入总线睡眠状态如果网络中的任意节点需要总线通信,它 可以通过发送NMPDU将网络从总线睡眠状态唤醒。

      AUTOSAR 网络管理功能通过网络管理模块和网络管理接口模块实现网络管理模块实现 上述的网络管理机制,根据不同网络类型(CAN、FlexRay)的特点规定了不同的网络状态定 义、通信调度和附加功能等网络管理接口模块实现了网络管理模块和上层应用软件的隔离 及网络管理的协调功能协调功能在网关中应用,除规定不同类型网络的网络管理协调外, 还规定了 AUTOSAR网络管理同OSEK网络管理间的协调AUTOSAR FlexRay 网络管理充分考虑了 FlexRay 总线周期性通信的特点,创造性地对 NMPDU 进行了分离,充分发挥了静态帧和动态帧的优势同时在网络管理状态方面进行了简 化,取消了 Limphome状态,使网络状态向睡眠的转换更加迅速,也降低了开发难度更重要 地是,AUTOSAR网络管理在架构上考虑了网关节点的实现及与OSEK网络管理的协作,迎合了 FlexRay 总线作为数据主干网的发展趋势对比和结论根据上文的论述,可以得出OSEK直接/间接网络管理与AUTOSARFlexRayNM的对比(图 4)图 4:网络管理协议比较OSEK网络管理中状态转换的执行基于定时器,。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.