
高二数学课本知识点总结归纳(8篇).docx
15页高二数学课本知识点总结归纳(8篇)高二数学课本知识点总结归纳(8篇) 你知道哪些高二数学知识点是真正对我们有帮助的吗在平凡的学习生活中,大家都背过各种知识点吧知识点就是一些常考的内容,或者考试经常出题的地方下面是小编给大家整理的高二数学课本知识点总结归纳,仅供参考希望能帮助到大家 高二数学课本知识点总结归纳篇1 高二数学知识点1 1、导数的定义:在点处的导数记作、 2、导数的几何物理意义:曲线在点处切线的斜率 ①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率V=s/(t)表示即时速度a=v/(t)表示加速度 3、常见函数的导数公式: 4、导数的四则运算法则: 5、导数的应用: (1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数; 注意:如果已知为减函数求字母取值范围,那么不等式恒成立 (2)求极值的步骤: ①求导数; ②求方程的根; ③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值; (3)求可导函数值与最小值的步骤: ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
高二数学知识点2 等差数列: 对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn 那么,通项公式为,其求法很重要,利用了“叠加原理”的思想: 将以上n—1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n—1个d,如此便得到上述通项公式 此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述 值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解 等比数列: 对于一个数列{an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比q;从第一项a1到第n项an的总和,记为Tn 那么,通项公式为(即a1乘以q的(n—1)次方,其推导为“连乘原理”的思想: a2=a1_, a3=a2_, a4=a3_, ```````` an=an—1_, 将以上(n—1)项相乘,左右消去相应项后,左边余下an,右边余下a1和(n—1)个q的乘积,也即得到了所述通项公式。
此外,当q=1时该数列的前n项和Tn=a1_ 当q≠1时该数列前n项的和Tn=a1_1—q^(n))/(1—q)、 高二数学知识点3 (1)总体和样本 ①在统计学中,把研究对象的全体叫做总体、 ②把每个研究对象叫做个体、 ③把总体中个体的总数叫做总体容量、 ④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,研究,我们称它为样本、其中个体的个数称为样本容量、 (2)简单随机抽样,也叫纯随机抽样就是从总体中不加任何分组、划类、排队等,完全随 机地抽取调查单位特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性简单随机抽样是其它各种抽样形式的基础通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法 (3)简单随机抽样常用的方法: ①抽签法 ②随机数表法 ③计算机模拟法 在简单随机抽样的样本容量设计中,主要考虑: ①总体变异情况; ②允许误差范围; ③概率保证程度 (4)抽签法: ①给调查对象群体中的每一个对象编号; ②准备抽签的工具,实施抽签; ③对样本中的每一个个体进行测量或调查 高二数学知识点4 一、直线与圆: 1、直线的倾斜角的范围是 在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。
当直线与轴重合或平行时,规定倾斜角为0; 2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα、 过两点(x1,y1),(x2,y2)的直线的斜率k=(y2—y1)/(x2—x1),另外切线的斜率用求导的方法 3、直线方程:⑴点斜式:直线过点斜率为,则直线方程为, ⑵斜截式:直线在轴上的截距为和斜率,则直线方程为 4、直线与直线的位置关系: (1)平行A1/A2=B1/B2注意检验(2)垂直A1A2+B1B2=0 5、点到直线的距离公式; 两条平行线与的距离是 6、圆的标准方程:、⑵圆的一般方程: 注意能将标准方程化为一般方程 7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线、 8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题、①相离②相切③相交 9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长 高二数学知识点5 第一章:三角函数考试必考题诱导公式和基本三角函数图像的一些性质只要记住会画图就行,难度在于三角函数形函数的振幅、频率、周期、相位、初相,及根据最值计算A、B的值和周期,及等变化时图像及性质的变化,这一知识点内容较多,需要多花时间,首先要记忆,其次要多做题强化练习,只要能踏踏实实去做,也不难掌握,毕竟不存在理解上的难度。
第二章:平面向量个人觉得这一章难度较大,这也是我掌握最差的一章向量的运算性质及三角形法则平行四边形法则难度都不大,只要在计算的时候记住要同起点的向量向量共线和垂直的数学表达,这是计算当中经常要用的公式向量的共线定理、基本定理、数量积公式难点在于分点坐标公式,首先要准确记忆向量在考试过程一般不会单独出现,常常是作为解题要用的工具出现,用向量时要首先找出合适的向量,个人认为这个比较难,常常找不对有同样情况的同学建议多看有关题的图形 第三章:三角恒等变换这一章公式特别多和差倍半角公式都是会用到的公式,所以必须要记牢由于量比较大,记忆难度大,所以建议用纸写之后贴在桌子上,天天都要看而且的三角函数变换都有一定的规律,记忆的时候可以结合起来去记除此之外,就是多练习要从多练习中找到变换的规律,比如一般都要化等等这一章也是考试必考,所以一定要重点掌握 高二数学知识点归纳 高二数学课本知识点总结归纳篇2 一、集合、简易逻辑(14课时,8个) 1、集合; 2、子集; 3、补集; 4、交集; 5、并集; 6、逻辑连结词; 7、四种命题; 8、充要条件 二、函数(30课时,12个) 1、映射; 2、函数; 3、函数的单调性; 4、反函数; 5、互为反函数的函数图象间的关系; 6、指数概念的扩充; 7、有理指数幂的运算; 8、指数函数; 9、对数; 10、对数的运算性质; 11、对数函数。
12、函数的应用举例 三、数列(12课时,5个) 1、数列; 2、等差数列及其通项公式; 3、等差数列前n项和公式; 4、等比数列及其通顶公式; 5、等比数列前n项和公式 四、三角函数(46课时,17个) 1、角的概念的推广; 2、弧度制; 3、任意角的三角函数; 4、单位圆中的三角函数线; 5、同角三角函数的基本关系式; 6、正弦、余弦的`诱导公式; 7、两角和与差的正弦、余弦、正切; 8、二倍角的正弦、余弦、正切; 9、正弦函数、余弦函数的图象和性质; 10、周期函数; 11、函数的奇偶性; 12、函数的图象; 13、正切函数的图象和性质; 14、已知三角函数值求角; 15、正弦定理; 16、余弦定理; 17、斜三角形解法举例 五、平面向量(12课时,8个) 1、向量; 2、向量的加法与减法; 3、实数与向量的积; 4、平面向量的坐标表示; 5、线段的定比分点; 6、平面向量的数量积; 7、平面两点间的距离; 8、平移 六、不等式(22课时,5个) 1、不等式; 2、不等式的基本性质; 3、不等式的证明; 4、不等式的解法; 5、含绝对值的不等式。
七、直线和圆的方程(22课时,12个) 1、直线的倾斜角和斜率; 2、直线方程的点斜式和两点式; 3、直线方程的一般式; 4、两条直线平行与垂直的条件; 5、两条直线的交角; 6、点到直线的距离; 7、用二元一次不等式表示平面区域; 8、简单线性规划问题; 9、曲线与方程的概念; 10、由已知条件列出曲线方程; 11、圆的标准方程和一般方程; 12、圆的参数方程 高二数学课本知识点总结归纳篇3 简单随机抽样的定义: 一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样 简单随机抽样的特点: (1)用简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为__;在整个抽样过程中各个个体被抽到的概率为__ (2)简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等; (3)简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础. (4)简单随机抽样是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样 简单抽样常用方法: (1)抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本适用范围:总体的个体数不多时优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法. (2)随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码概率. 高二数学重点知识点 函数的性质: 函数的单调性、奇偶性、周期性 单调性:定义:注意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较) 导数法(适用于多项式函数) 复合函数法和图像法 应用:比较大小,证明不等式,解不等式 奇偶性:定义:注意区间是否关于原点对称,比较f(x)与f(-x)的关系f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数; f(x)+f(-x)=0f(x)。












