
2023届吉林省长春汽车经济技术开发区中考联考数学试卷(含答案解析).doc
26页2023届吉林省长春汽车经济技术开发区中考联考数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、测试卷卷上答题无效4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是几何体的三视图,该几何体是( )A.圆锥 B.圆柱 C.三棱柱 D.三棱锥2.如图,矩形 ABCD 的边 AB=1,BE 平分∠ABC,交 AD 于点 E,若点 E 是 AD 的中点,以点 B 为圆心,BE 长为半径画弧,交 BC 于点 F,则图中阴影部分的面积是( )A.2- B. C.2- D.3.已知实数a<0,则下列事件中是必然事件的是( )A.a+3<0 B.a﹣3<0 C.3a>0 D.a3>04.下列图形中,是轴对称图形但不是中心对称图形的是( )A.直角梯形 B.平行四边形 C.矩形 D.正五边形5.钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是( )A. B. C. D.6.等腰三角形的一个外角是100°,则它的顶角的度数为( )A.80° B.80°或50° C.20° D.80°或20°7.在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(3,0),在y轴的正半轴上取一点C,使A、B、C三点确定一个圆,且使AB为圆的直径,则点C的坐标是( )A.(0,) B.(,0) C.(0,2) D.(2,0)8.不等式组的解集为.则的取值范围为( )A. B. C. D.9.如图,中,E是BC的中点,设,那么向量用向量表示为( )A. B. C. D.10.计算 的结果为( )A.1 B.x C. D.11.如图,已知点A、B、C、D在⊙O上,圆心O在∠D内部,四边形ABCO为平行四边形,则∠DAO与∠DCO的度数和是( )A.60° B.45° C.35° D.30°12.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=( )A.52° B.38° C.42° D.60°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,Rt△ABC的直角边BC在x轴负半轴上,斜边AC上的中线BD的反向延长线交y轴正半轴于点E,双曲线y=(x<0)的图象经过点A,S△BEC=8,则k=_____.14.如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:_____.15.如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的半径是____cm.16.如图,线段 AB 是⊙O 的直径,弦 CD⊥AB,AB=8,∠CAB=22.5°,则 CD的长等于___________________________.17.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,每块方砖大小、质地完全一致,那么它最终停留在黑色区域的概率是__________.18.如图,、分别为△ABC的边、延长线上的点,且DE∥BC.如果,CE=16,那么AE的长为_______ 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.求证:四边形OCED是矩形;若CE=1,DE=2,ABCD的面积是 .20.(6分)黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元; (2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.21.(6分)已知,如图1,直线y=x+3与x轴、y轴分别交于A、C两点,点B在x轴上,点B的横坐标为,抛物线经过A、B、C三点.点D是直线AC上方抛物线上任意一点.(1)求抛物线的函数关系式;(2)若P为线段AC上一点,且S△PCD=2S△PAD,求点P的坐标;(3)如图2,连接OD,过点A、C分别作AM⊥OD,CN⊥OD,垂足分别为M、N.当AM+CN的值最大时,求点D的坐标.22.(8分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.(1)求证:△ADC∽△CDB;(2)若AC=2,AB=CD,求⊙O半径.23.(8分)如图,在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,交BC于点F,交AB于点E.求证:FC=2BF.24.(10分)解不等式组:,并把解集在数轴上表示出来。
25.(10分)如图,在中,,,点D是BC上任意一点,将线段AD绕点A逆时针方向旋转,得到线段AE,连结EC.依题意补全图形;求的度数;若,,将射线DA绕点D顺时针旋转交EC的延长线于点F,请写出求AF长的思路.26.(12分)我市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W万元.(毛利润=销售额﹣生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(写出自变量x的取值范围)(2)求W与x之间的函数关系式;(写出自变量x的取值范围);并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?27.(12分) 如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),抛物线的对称轴直线x=交x轴于点D.(1)求抛物线的解析式;(2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,交x轴于点G,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;(3)在(2)的条件下,将线段FG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段FG与抛物线交于点N,段GB上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.2023学年模拟测试卷参考答案(含详细解析)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【答案解析】分析:根据一个空间几何体的主视图和左视图都是长方形,可判断该几何体是柱体,进而根据俯视图的形状,可判断是三棱柱,得到答案.详解:∵几何体的主视图和左视图都是长方形,故该几何体是一个柱体,又∵俯视图是一个三角形,故该几何体是一个三棱柱,故选C.点睛:本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.2、B【答案解析】利用矩形的性质以及结合角平分线的性质分别求出AE,BE的长以及∠EBF的度数,进而利用图中阴影部分的面积=S-S-S,求出答案.【题目详解】∵矩形ABCD的边AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE= ,∵点E是AD的中点,∴AE=ED=1,∴图中阴影部分的面积=S −S −S =1×2− ×1×1− 故选B.【答案点睛】此题考查矩形的性质,扇形面积的计算,解题关键在于掌握运算公式3、B【答案解析】A、a+3<0是随机事件,故A错误;B、a﹣3<0是必然事件,故B正确;C、3a>0是不可能事件,故C错误;D、a3>0是随机事件,故D错误;故选B.点睛:本题考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件指一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、D【答案解析】分析:根据轴对称图形与中心对称图形的概念结合矩形、平行四边形、直角梯形、正五边形的性质求解.详解:A.直角梯形不是轴对称图形,也不是中心对称图形,故此选项错误; B.平行四边形不是轴对称图形,是中心对称图形,故此选项错误; C.矩形是轴对称图形,也是中心对称图形,故此选项错误; D.正五边形是轴对称图形,不是中心对称图形,故此选项正确. 故选D.点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.5、A【答案解析】根据轴对称图形的概念求解.解:根据轴对称图形的概念可知:B,C,D是轴对称图形,A不是轴对称图形,故选A.“点睛”本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6、D【答案解析】根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答.【题目详解】∵等腰三角形的一个外角是100°,∴与这个外角相邻的内角为180°−100°=80°,当80°为底角时,顶角为180°-160°=20°,∴该等腰三角形的顶角是80°或20°.故答案选:D.【答案点睛】本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.7、A【答案解析】直接根据△AOC∽△COB得出OC2=OA•OB,即可求出OC的长,即可得出C点坐标.【题目详解】如图,连结AC,CB. 依△AOC∽△COB的结论可得:OC2=OA×OB,即OC2=1×3=3,解得:OC=或− (负数舍去),故C点的坐标为(0, ).故答案选:A.【答案点睛】本题考查了坐标与图形性质,解题的关键是熟练的掌握坐标与图形的性质.8、B【答案解析】求出不等式组的解集,根据已知得出关于k的不等式,求出不等式的解集即可.【题目详解】解:解不等式组,得.∵不等式组的解集为x<2,∴k+1≥2,解得k≥1.故选:B.。












