好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2007数学二真题及答案解析.docx

10页
  • 卖家[上传人]:杏**
  • 文档编号:282442595
  • 上传时间:2022-04-26
  • 文档格式:DOCX
  • 文档大小:19.13KB
  • / 10 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 2007数学二真题及答案解析 2007年硕士研究生入学考试数学二试题及答案解析 一、选择题:(本题共10小题,每小题4分,共40分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (1) 当0x + → (A) 1- (B) ln (C) 1. (D) 1- [ B ] 利用已知无穷小量的等价代换公式,尽量将四个选项先转化为其等价无穷小量,再进行比较分析找出正确答案. 当0x + → 时,有1(1)~-=-- 1~ ; 211 1~ .22 x -= 利用排除法知应选(B). (2) 函数11()tan ()() x x e e x f x x e e += -在[,]ππ-上的第一类间断点是x = (A) 0. (B) 1. (C) 2 π - . (D) 2 π . [ A ] 本题f (x )为初等函数,找出其无定义点即为间断点,再根据左右极限判断其类型。

      f (x )在[,]ππ-上的无定义点,即间断点为x =0,1,.2 π± 又 111 10 ()tan tan lim lim 1(1)1() x x x x x x e e x x e e x x e e e e - - →→++=?=?-=---, 111 10 ()tan tan lim lim 111() x x x x x x e e x x e e x x e e e e + + →→++=?=?=--, 可见x =0为第一类间断点,因此应选(A). (3) 如图,连续函数y =f (x )在区间[?3,?2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[?2,0],[0,2]的图形分别是直径为2的上、下半圆周,设0 ()(). x F x f t dt =? 则下列结论正确的是 (A) 3(3)(2)4F F =- -. (B) 5 (3)(2)4F F =. (C) )2(43)3(F F =-. (D) )2(4 5 )3(--=-F F . [ C ] 本题考查定积分的几何意义,应注意f (x )在不同区间段上的符号,从而搞清 2007年硕士研究生入学考试数学二试题及答案解析 一、选择题:(本题共10小题,每小题4分,共40分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (1) 当0x + → (A) 1- (B) ln (C) 1. (D) 1- [ B ] 利用已知无穷小量的等价代换公式,尽量将四个选项先转化为其等价无穷小量,再进行比较分析找出正确答案. 当0x + → 时,有1(1)~-=-- 1~ ; 211 1~ .22 x -= 利用排除法知应选(B). (2) 函数11()tan ()() x x e e x f x x e e += -在[,]ππ-上的第一类间断点是x = (A) 0. (B) 1. (C) 2 π - . (D) 2 π . [ A ] 本题f (x )为初等函数,找出其无定义点即为间断点,再根据左右极限判断其类型。

      f (x )在[,]ππ-上的无定义点,即间断点为x =0,1,.2 π± 又 111 10 ()tan tan lim lim 1(1)1() x x x x x x e e x x e e x x e e e e - - →→++=?=?-=---, 111 10 ()tan tan lim lim 111() x x x x x x e e x x e e x x e e e e + + →→++=?=?=--, 可见x =0为第一类间断点,因此应选(A). (3) 如图,连续函数y =f (x )在区间[?3,?2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[?2,0],[0,2]的图形分别是直径为2的上、下半圆周,设0 ()(). x F x f t dt =? 则下列结论正确的是 (A) 3(3)(2)4F F =- -. (B) 5 (3)(2)4F F =. (C) )2(43)3(F F =-. (D) )2(4 5 )3(--=-F F . [ C ] 本题考查定积分的几何意义,应注意f (x )在不同区间段上的符号,从而搞清 。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.