好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

用彩色图像提取植物特征的研究.doc

12页
  • 卖家[上传人]:l****6
  • 文档编号:38056081
  • 上传时间:2018-04-26
  • 文档格式:DOC
  • 文档大小:39KB
  • / 12 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 1用彩色图像提取植物特征的研究摘要 本文介绍了一种基于计算机视觉的快速植物识别算法,能够快速正确地将植物从复杂的土壤背景中识别出来,从而满足实时地为后续变量控制提供信号的要求利用 AOI 测试工具,采集了不同土壤、作物残留物以及各种光照条件下植物的图像进行处理,通过提取图像中每一个像素的 R、G、B 三个分量值计算出(2G-R-B)过绿颜色特征值,将彩色图像转变成灰度图像显示关键词 计算机视觉;图像处理;AOI;作物识别;像素1 概述借助于计算机视觉技术的智能化,能快速识别出植物,判断其覆盖率,并确定其位置,有针对性地采取措施这不仅能能降低投入,而且对我国温室精确种植和设施农业着重要的经济意义和实际价值随着计算机软硬件性能价格比的提高,特别是近十年来计算机技术在各个领域的渗透,利用计算机视觉技术来取得植物特征并作进一步分析已经变得切实可行[1]本文针对温室大棚采集的杂草图像进行研究,实现了一种快速植物特征提取与识别算法,能够满足实时地为后续变量控制提供信号的要求,为进一步的研究工作打下了一定的基础2 图像处理2.1 图像分割利用 CCD 彩色摄像机获取的图像,通过图像采集卡将获取的图像以真彩色 24 位位图的格式存储。

      真彩色 24 位位图在存储格式上是以3个字节表示图像中的一个像素点这三个字节分别存储像素点的 R、G、B 颜色分量值三个值根据 RGB 颜色坐标系统(见图 1)合成这个像素点的颜色值目的一是为了获得更多的信息量,2二是为了减少图像解压缩的过程,加快处理速度图像分割是由图像处理到图像分析的关键步骤,也是一种基本的计算机视觉技术随后的图像处理,诸如特征提取和对象识别,都依赖于图像分割的质量图像分割就是指把图像分成各具特性的区域并提取感兴趣目标的技术和过程[2]尽管人们在图像分割方面做了许多研究工作,但由于没有通用的分割理论,现己提出的分割算法大都是针对具体问题的,并没有一种适合所有图像的通用分割算法[3]这里的图像分割,主要是指去除植物图像中的土壤背景及作物残茬为了有效的将叶面与背景区分,要对原始图像数据进行选择和变换,得到最能反映分类本质的特征在此所说的图像特征,指的是图像中各个点的特征,而不是整个图像的整体特征对于彩色图像分割问题,必须充分利用彩色图像所包含的丰富的色彩信息,选择适当的特征,使目标和背景能依据特征上的差别进行区分,利用这个颜色特征将彩色图像转变成灰度图像,再确定阈值将灰度图像二值化。

      2.2 RGB 和 HSI 坐标系统数字图像处理中,常用的颜色坐标系统有 RGB 和 HSI 坐标系统(坐标系统图如图 1、图 2)RGB 颜色坐标系统以红 R、绿 G、蓝 B 三种颜色为基色,其它颜色由这三种基色加权混合而成HSI 坐标系统中 H 表示色调(Hue),S 表示饱和度(Saturation),I 表示密度,对应图像的亮度(Intensity)面向硬件设备(如彩色显示器和打印机等)的最常用彩色坐标系统是 RGB 坐标系统,而面向彩色处理的最常用颜色坐标系统是 HSI 坐标系统,HSI 坐标系统有两个特点:其一,I 分量与图像的彩色信息无关;其二,H 和 S 分量与人感受颜色的方式是紧密相连的这些特点3使得 HSI 坐标系统非常适合于借助人的视觉系统来感知彩色特性的图像处理算法[4]图 1 RGB 颜色坐标系统 图 2 HSI 颜色坐标系统从 RGB 坐标系统到 HSI 坐标系统的转换公式如下:在 RGB 颜色坐标系统中,如果不考虑光照强度,而只对色度感兴趣,则只要知道R、G、B 的相对值即可相对值 r、g、b 称为色度坐标,其计算公式如下:(2)其中,Rn、Gn、Bn 分别是规范到 0~l 之间的 RGB 值,其计算公式如下:(3)式中的 Rm、Gm、Bm 分别是 RGB 颜色坐标系中的最大分量值。

      不同的彩色显示系统有不同的取值范围,例如,一个 24 位的真彩色显示系统中,Rm=Gm=Bm,此时 r、g、b 可按下式计算(4) 2.3 统计实验物体的颜色是由它的反射光谱特性和光源特性所决定的由于有生命的杂草的反射光谱特性不同于无生命的土壤背景,因而两者在颜色上形成了鲜明的对比,但在亮度上差别不明显对不同土壤、土壤残留物以及各种光照条件下的用于识别杂草颜色指数所做的研究表明,在通常情况下,植物图像的背景即土壤有较大的r、b 值,而其 g 值却总小于植物本身的 g 值,这里 r、g、b 是归一化的颜色分量,其计算公式如(4)通过研究利用 r-b、g-b、 (g-b)/|r-g|和(2g-r-b)等指标来区别植物与非植物背景是非常有效的本文在前人的研究基础上,利用 AOI(Area of interest,感兴趣区域)测试工具对大量的包含各种类型的杂草图像进行颜色特征的分析,采集了不同土壤、作物残留物以及各种光照条件下温室大棚内的杂草图像统计研究上述四种归一化颜色特征参数的均值和标准偏差,以及(2G-R-B)4颜色特征参数和 H、S、I 值的均值和标准偏差统计的结果如下表 1、表 2、表 3、表 4。

      为了便于计算,作了如下规定:为了避免分母为零的情况发生,规定在(-0.01,0.01)之间的(r-g)值为 0.01;有些叶子像素的 g 值远大于 r 值,从而导致 (g-b)/|r-g|很小,为避免这种情况,当(r-g)小于-0.08 时, (r-g)的值设置为0.01 (注:“残茬土壤”为含有作物残茬的土壤)表 1 归一化颜色参数的标准偏差目 标 类 型rgb2g-r-br-gg-b(g-b)/(r-g)干 土0.2554320.2101470.1689810.01190350.0474420.0434120.154674湿 土0.2757150.2265530.1835250.0164120.0555250.0508900.241860残茬土壤[干]0.3771360.3080900.2475100.0127310.7072600.0630600.157694杂 草60.5450860.6749040.4979350.3240100.1380520.1874710.438822表 2 归一化颜色参数的均值目 标 类 型rgb2g-r-br-gg-b(g-b)/(r-g)干 土0.60521670.5115910.414471-0.010520.0936260.0971201.040330湿 土0.5076030.4165220.330613-0.005600.0943580.0887620.968741残茬土壤[干]0.5470600.4543450.369686-0.008060.0927150.08466080.943724杂 草0.3429270.4461900.2989430.250510-0.103260.1472471.499788表 3 (2G-R-B)颜色参数的均值和标准偏差均值标准偏差目 标 类 型RGB92G-R-BRGB2G-R-B干 土153.548126.948103.217-2.869623.642219.772719.07271.1938湿 土151.755124.67499.0408-1.449024.721621.25681020.82571.5772残茬土壤[干]159.967133.067108.533-2.366724.761619.403116.75743.6245杂 草119.597151.750103.71980.183732.391130.833129.560715.707表 4 H、S、I 值的均值和标准偏差11均值标准偏差目 标 类 型HSIHSI干 土76.420433.00970.00543.31515.70050.005612湿 土77.878435.00280.00433.71385.94850.0041残茬土壤[干]78.128834.17240.00403.58887.77660.0032杂 草7.617039.25000.13999.63248.2079130.06192.4 结果分析由表 l 和表 2 可以得出以下结论:(1)对于 r、g、b 三个分量值,干土大于湿土,这是因为干土的反射率高于湿土的反射率,土壤湿度越大,则 r、g、b 值越低。

      2)在相同的土壤湿度下,由于有麦茬等覆盖物的区域的反射率低于没有覆盖物的区域,因此,其色度坐标 r、g、b 较小,麦茬覆盖率越高,则该区域的 r、g、b 分量值就越低3)土壤、麦茬等非植物背景的红色分量占主导地位,而植物部分的绿色分量 g占主导地位,从而为植物与非植物背景的识别提供了很好的依据4)植物部分的(g-b)的值比非植物部分稍高,而非植物部分的(r-g)的值稍高于植物部分,但差别都不明显,而且偏差相对较大,不太适合于背景分割5)植物部分的(g-b)/ | r-g |值高于非植物部分,且差别比较明显,所以(g-b)/ | r-g |值也是背景分离的一个非常有用的颜色参数但是(g-b)/ | r-g |的值计算比较麻烦,尤其是当(r-g)的值较小时, (g-b)/ | r-g |就会变得很大,从而导致其偏差较大,不利于背景分割6)植物部分的过绿特征(Excess Green,2g-r-b)大于土壤等非植物部分,非植物部分的过绿特征值一般小于等于零,而植物部分的过绿特征值一般大于等于0.20,且过绿特征的偏差都相对较小因此,过绿特征是杂草图像中用于背景分离的很好的阈值参数[5]由表 3 可以得出以下结论:(7)没有归一化的 RGB 值的偏差较大,主要是因为光照强度的变化所导致的。

      14(8)对于没有归一化的过绿特征(2G-R-B)而言,植物部分的值远大于零,而非植物部分的值在零附近虽然植物部分与非植物部分的过绿特征的偏差都相对较大,但是两部分的过绿特征值相距甚远,几乎没有重叠现象,故由没有归一化的RGB 值所产生的过绿特征同样可用于杂草图像的背景分割,并且计算简单,处理速度快但光照强度的变化不宜过大由表 4 可以得出以下结论:(9)植物部分的饱和度稍高于非植物部分,而且饱和度的偏差相对较大,两部分的饱和度值交迭严重,故饱和度在杂草识别中没有可以利用的信息10)植物部分的亮度稍高于非植物部分,但差别甚微,而且相对偏差很大,不能用于杂草识别中的背景分割11)植物部分的色度值远远高于非植物部分,土壤湿度增加时,其色度值略有增加,但幅度不大,而且色度的标准偏差相对很小,非植物部分与植物部分的色度范围几乎不存在重叠现象,故色度也是可以用于杂草背景分割的参数3 结论综上所述, (2g-r-b)、 (2G-R-B)、色度 H 三种颜色特征值都为杂草与土壤背景提供了足够的对比度,有利于杂草图像的背景分割本文在图像处理试验中发现,对于由没有归一化的 RGB 分量所产生的过绿特征(2G-R-B),在室内光照强度相对比较稳定的条件下,在杂草与土壤背景之间的反差很大,因而可以用于杂草图像的背景分割,而且在这种情况下一些图像由彩色图像转成灰度图像的处理效果比采用(2g-r-b)颜色特征值的处理效果更好,结合计算机系统中采用的真彩色 24 位 bmp 图像文件格式考虑,采用(2G-R-B)颜色特征值计算简单,处理速度快,可以很好的将彩色图像转成灰度图,并且为下一步的图像分割作好了准备。

      本系统软件通过提取图像中每一个像素的 R、G、B 三个分量值计算出15(2G-R-B)颜色特征值,将彩色图像转变成灰度图像显示,因而可以利用图像的(2G-R-B)颜色特征值进行下一步灰度图像的阈值分割参考文献:[1] 应义斌,饶秀勤. 机器视觉技术在农产品品质自动识别中的应用[J]. 农业工程学报,2000,16(1):4~17.[2] 何东健,杨青等. 实用图像处理技术[M]. 西安:陕西科学技术出版社,1998.[3] Fu K S,Mui J K. A survey on image segme。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.