
有源功率因数校正电路中电压电流放大器补偿网络元件之计算.docx
15页文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.11文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.有源功率因数校正电路中电压、电流放大器补偿网络元件之计算引言众所周知,在临界导通或连续导通的有源功率因数校正(APFIC电路中,都有运算放大器作电压放大器或电流放大器,并且为了使放大器满足一定的频率响应的要求,在放大器的外接电路中还要加反馈网络(或称补偿网络)反馈网络一般有两种接法:一是接在放大器的输入与输出之间;二是接在输出与地之间,视运算放大器的类型而定前一种接法中电路的形式如图1所示,图中R、2为补偿网络的RC元件在后一种接法中,运算放大器是跨导型的,补偿网络接在输出与地之间,但补偿网络的形式不变如何选择和计算补偿元件的参数,是一个在设计电子镇流器中功率因数校正电路时必须解决的问题在一般的文献资料中,通常是根据对放大器的电压传输函数(或频率响应)随频率变化的要求,即输出电压/输入电压比依赖于频率的关系来选择的其中,电压传输特性多用波特图和零图Ipfc中电压误差放大器的一般结构形式点、极点来表示但一般从事节能灯及电子镇流器设计的技术人员对这方面知识了解不多,而现有资料介绍得又比较简略,往往只给出结论,没有必要的说明。
因此本文准备先复习一下有关线性系统的传输函数、零点、极点、波特图等基本知识,然后再讨论放大器反馈(补偿)网络元件的计算方法,使相关技术人员能够合理地选择元件,避免盲目性止匕外,由于现有网上提供的各种技术了中,对反馈(补偿)网络元件的计算公式,不同公司所给出的方法不尽相同,有的文献中所给出的元件参数差别很大,有时会达到1个数量级之多,使人有莫衷一是的感觉所以,溯本追源,从根本上对反馈(补偿)网络元件的计算公式加以推到是很有必要的,这对阅读电子镇流器IC的有关技术资料、理解放大器反馈(补偿)网络的计算公式是很有意义的1线性系统的传输函数、极点和零点、波特图性系统中,当系统受到输入量x⑴的作用后,其输出为y(t)将输入量和输出量经拉普拉斯变换后,分别用X(s)、Y(s)表示则可以定义输出量与输入量拉氏变换之比为系统的传输函数,记作A(s),即:式中,Y(s)、X(s)是以最高幕分别为sm,sn表示的多项式对于任何一个系统,知道了它的传输函数和输入量并将其变换为拉氏变换式,就可以按上式求出它的输出量的拉氏变换式,进而求出输出量y(t)根据输入量、输出量可以为电压或电流的不同形式,传输函数有4种形式,在这里我们只给出电压传递函数,即以x⑴、y⑴分别表示系统的输入、输出电压时,输出电压与输入电压之比称为系统的电压传输函数:Av(s)Vo(s)/Vi(s)(1)s Z1 s z2 ... s zmA (s) H ——1 2 m(2)将传输函数Av(s)的分子、分母多项式分别进行因式分解,则Av(s)可以表示为:sPisP2...sPn式中,4k1,2,...,m是分子多项式等于0的根,叫做零点,zk表示第k个JH令点oPii1,2,...,n是分母多项式等于0的根,叫做极点,Pi表示第i个极点。
H称为标尺因子因为分子、分母多项式的最高幕分别为m和n,所以A(s)有m个零点和n个极点通常将分母多项式的最高幕n称为传输函数的阶,如n=2,则称传输函数为二阶函数, 在式(2)中,n=3,则称为三阶函数,以此类推如以j代替A(j )s,则传输函数变为式(3)的形式:j Z2 …j ZmP1 j P2 ... j Pn它是线性系统在简谐信号(正弦信号)作用下的电压传输函数 为电压放大器来说,电压传输函数习惯上又称为频率响应特性, 电压增益及其相移随频率变化的情况对于线性系统它表示放大器的传输函数式⑶进A(j )1Ao 一1步还可以表示为:L 1 L ... 1 jz1PiZ2P2zmPnAo11 z1 LPi式中,Ao是以 Mk(j )0时频率特性函数的值,为常数1j/zk和Ni(j)1j/Pi分别代表分子和分母的一个因子,则式(4)的分子是Mi(j)、M2(j)、•••、Mk(j)的连乘式,分母是Ni(j)、N2(j)、…、Ni(j)的连乘式,如式(4)的最右边的等式所示频率响应特性A(j)的幅模A可表示为:M1M2...MmA0式中,Mk 幅模1 j /Pi分别代表每一个因子Mk(j )、Ni(j )的N1N2...Nn1j/zk、Ni如果对式(5)的两边取对数,就变成一些对数的代数和,分子的对数为正,而分母的对数为负,即:式中右边第一项201gAo为一个常量,加上它,相对于幅频特性在纵轴上垂直移动该常量值。
后面的一些项表示所有的极点和零点对频率响应特性的贡献的代数和这样,对于多极点和零点的系统,我们只要分析和求出1个极点和1个零点对频率特性幅模和相位的贡献,就不难求出每一个极点和零点对频率响应特性的贡献,最后将所有零极点对频率响应的贡献取代数和就可以了为使讨论简单,在以下的分析中,我们只讨论极点和零点均为负实数的情况,因为对于一个稳定的系统,其极点只能为负实数或实部为负的共腕复数令:zk、pi均为正的实数由此得到:1个零点的因子表达式为:Mk(j ) 1达式为:Ni(j ) 1 j—0 pi它们的幅模随频率变化可分别表示为:Mk ; 71 -取对数后变为:2 1/2201g 1/Ni 201g 1 / pi它们的相角随频率变化可分别表示为:i arctg / pizk,1个极点的因子表(6)⑺(8)根据式(7)、(8)可以分别作出一个零点和极点的幅频特性和相频特性幅频特性曲线的纵坐标为增益,以分贝表示,而不直接以放大倍数表示;横轴为频率,以它的对数值表示,即按10倍频均匀变化用这种方法做出的频率特性曲线叫做波特图,或称为对数幅频特性曲线和对数相频特性曲线2单零点、单极点的幅频特性和相频特性的近似曲线、波特图示例2.1单个零点的幅频特性、相频特性波特图由上述分析可知,对任何一个复杂系统,只要分析1个零点和1个极点,最后将所有零、极点对频率响应的贡献取代数和就可以得到整个系统的频率响应。
由式(7),当zk时,1个零点Mk(j)1L的幅频特性可近似表示为:zk21/220lgMk20lg1/zk20lg/zk在横轴、纵轴Mk均按对数刻度的坐标系中,它是1条与横轴交于零点频率为zk处、斜率为20dB/10倍频(即频率每增加10倍、增益Mk就增加10dB)的斜线,这条直线就是频率 频特性曲线的渐近线由式(7)还可以知道,当 zk时,㈤相频特性图2单个零点明(.的幅频特性及相频特性的波德图zk时单个零点Mk随频率 变化的幅该式可近似表示为0,即放大倍数为1, 输出基本上等于输入当 zk时,输出等于输入按上述分析,可以求出单个零点zk 的幅频特性及相频特性的波特图,如图 2所示图2(a)中横坐标为频率,按0.1、 1、10、100 zk均匀等值变化;纵坐标 为增益,用分贝表示,按 10、20、30 分贝均匀变化图2(a)实线为幅频特性 的近似曲线,虚线为幅频特性的实际曲 线根据类似讨论,可以得到单个零点 的相频特性,如图2(b)所示,实现为相 频特性的近似曲线,虚线为相频特性的 实际曲线2.2单个极点的幅频特性、相频 特性波特图根据类似的方法,还可以画出单个极点 频特性的波特图。
如图3所示1个极点的幅频特性曲线是:当率 pi处、斜率为-20dB/10倍频(即频率Ni j 1 j / pi的幅频特性及相pi时,它是1条与横轴交于极点频每增加10倍、增益Mk就减少20dB)很近,即 输入当 于输入 性的波的斜线,而当pi时,它靠横轴放大倍数接近于1,输出差不多等于pi时,它与横轴重合,输出等图3单个极点的幅频特性及相频特特图3 一些RC电路的幅频特性画法举例下面举一些例子,来说明如何计算一个具体电路的幅频特性,并画出波特图,以增加读者对如何用波特图表示电路的幅频特性的感性认识3.1 例1求图4所示的频率特性弁画出其波特图3.1.1 图4⑻电路的频率特性对图4(a),有关系式VMR/R1/jCjVRC/1jRC,由此得到图4(a)电路的频率响应特性即传输函数为:AVj RC1 j RC图5 图4(金)电路的频率特性的传输特性的零极点画法直接画出来它有1个极点,其极点频率p1/RC(极点频率处,电阻与容抗想等,即R1/pC),代入上式,频率响应特性的表达式(9)可以改写为:传输函数的幅模即幅频特性为:若用分贝表示,则有:2201gA201g/p10lg1/p(10)其相频特性为:90。
arctg/p(11)由式(10)、(11)不难画出幅频特性和相频特性,如图5所示:式(10)右边第1项表示极点频率一下,当频率按10倍频减少时,对数位-1,对幅频特性的贡献为-20dB即频率每减少10倍,增益将下降20dB右边第2项表示当频率比极点频率p大很多时,方括号中的1可以忽略不计,这样,在频率比极点频率大很多时,第1、第2两项之和为00幅频特性曲线和水平轴重合增益为0,放大倍数为1,输出等于输入上述幅频特性还可以根据前面所讲由式(9)可知:传输函数有1个零点z0,1个极点p1/RC对这种z0的零点的处理不同于一般的零点,在下面画波特图时,对这一点将特别加以说明:电路的近似幅频特性即波特图的画法如下:1)对零点为z0的处理,不像非零的零点,直接在横坐标的零点处以+20dB/10倍频为斜率做一条直线,而是在此零点的后面的极点p1/RC以+20dB/10倍频做一条直线1,如图6中的细实线所示,它的斜率是正的,它代表式⑼中的分子jRCj/p对幅频特性的贡献显然,当频率p的10倍频增加时,增益将增加20dB2)对极点p1/RC的处理,仍然按上面的方法在横坐标轴上p1/RC处以-20dB/10倍频为斜率,在图6中作另一条直线2,它的斜率是负的;当斜率按p的10倍频增加时,增益将减少20dB3)将直线1和直线2相加,得到近似的幅频特性曲线为折线3,它是直线1和一段水平线的和(图中用粗线表示折线3);实际上它就是上述电路的幅频特性的波特图。
折线3的水平部分与横坐标重合,因为从图(a)电路可以看出,在频率很高时,电容C近似短路,输出等于输入,增益为1,取对数后增益为0,应当与横轴重合,图6的幅频特性就是前面图5的近似曲线,二者的幅频特性是一致的3.1.2 图4(b)电路的频率特性对图4(b)电路有:由此得到图4(b)电路的频率响应特性为:它只有1个极点:p1/RC,它就是前面分析的单极点情况,按上面的分析,它的幅频特性就是图3所示的图形,开始一段与横坐标重合,以后在横坐标极点p1/RC处-20dB/10倍频为斜率作一条斜线,它的斜率是负的p3.2 例2求图7所示电路的阻抗及零、极点在有的IC电压误差放大器中也用图7这种阻容网络作反馈补偿用,但比较少见:图7电路的阻抗乙表达式为:Zf(12)1jRC1C2/jC11jRC2由式(12)可知,它有1个零点频率:fz1/2RGC2;两个极点频率0,图7-种电压误差放大器的补偿网络1/2RC2根据其零点、极点频率不难画出其幅频特性来在做了上述知识的铺垫之后,下。












