2024学年甘肃省白银市第五中学八年级数学第一学期期末考试试题含解析.doc
22页2024学年八年级上学期数学期末模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题(每小题3分,共30分)1.如图, ,再添加下列条件仍不能判定的是( )A. B. C. D.2.已知线段 a=2cm,b=4cm,则下列长度的线段中,能与 a,b组成三角形的是( )A.2cm B.4cm C.6cm D.8cm3.如图,点B、F、C、E在一条直线上,,,要使≌,需要添加下列选项中的一个条件是 A. B. C. D.4.对于实数,,我们用符号表示,两数中较小的数,若,则的值为( ).A.1,,2 B.,2 C. D.25.下列计算结果正确的是( )A. B. C. D.6.如图,在平行四边形ABCD中,∠ODA=90°,AC=10,BD=6,则AD的长为( )A.4 B.5 C.6 D.87.下列图形中有稳定性的是( )A.正方形 B.长方形 C.直角三角形 D.平行四边形8.如图,在中,,点在上,连接,将沿直线翻折后,点恰好落在边的点处若,,则点到的距离是( )A. B. C. D.9.能说明命题“”是假命题的一个反例是( )A.a=-2 B.a=0 C.a=1 D.a=210.如图,已知△ABC中,∠A=75°,则∠1+∠2=( )A.335°° B.255° C.155° D.150°二、填空题(每小题3分,共24分)11.如图所示,已知△ABC和△BDE均为等边三角形,且A、B、E三点共线,连接AD、CE,若∠BAD=39°,那么∠AEC= 度.12.如图所示,等边的顶点在轴的负半轴上,点的坐标为,则点坐标为_______;点是位于轴上点左边的一个动点,以为边在第三象限内作等边,若点.小明所在的数学兴趣合作学习小组借助于现代互联网信息技术,课余时间经过探究发现无论点在点左边轴负半轴任何位置,,之间都存在着一个固定的一次函数关系,请你写出这个关系式是_____.13.若,则_________14.十二边形的内角和是________度.正五边形的每一个外角是________度.15.已知,则________________.16.多项式分解因式的结果是____.17.在等腰△ABC中,AB=AC,∠BAC=20°,点D在直线BC上,且CD=AC,连接AD,则∠ADC的度数为_____.18.如图,圆柱形容器中,高为1m,底面周长为4m,在容器内壁离容器底部0.4m处的点B处有一蚊子.此时,一只壁虎正好在容器外壁,离容器上沿0.6m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为______m(容器厚度忽略不计).三、解答题(共66分)19.(10分)如图,等边△ABC的边长为12cm,点P、Q分别是边BC、CA上的动点,点P、Q分别从顶点B、C同时出发,且它们的速度都为3cm/s.(1)如图1,连接PQ,求经过多少秒后,△PCQ是直角三角形;(2)如图2,连接AP、BQ交于点M,在点P、Q运动的过程中,∠AMQ的大小是否变化?若变化,请说明理由;若不变,请求出它的度数.20.(6分)如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.21.(6分)学校为了丰富同学们的社团活动,开设了足球班.开学初在某商场购进A,B两种品牌的足球,购买A品牌足球花费了2400元,购买B品牌足球花费了1600元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花20元.(1)求所购买的A、B两种品牌足球的单价是多少元?(2)为响应习总书记“足球进校园”的号召,决定再次购进A,B两种品牌足球共30个,恰逢商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了10%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A,B两种品牌足球的总费用不超过2000元,那么此次最多可购买多少个B品牌足球?22.(8分)如图,在平面直角坐标系中,每个小正方形网格的边长为1,和关于点成中心对称.(1)画出对称中心,并写出点的坐标______.(2)画出绕点顺时针旋转后的;连接,可求得线段长为______.(3)画出与关于点成中心对称的;连接、,则四边形是______;(填属于哪一种特殊四边形),它的面积是______.23.(8分)(1)解方程(2)在(1)的基础上,求方程组的解.24.(8分)在甲村至乙村的公路旁有一块山地正在开发,现有一处需要爆破.已知点与公路上的停靠站的距离为米,与公路上另一停靠站的距离为米,且,如图,为了安全起见,爆破点周围半径米范围内不得进入,问在进行爆破时,公路段是否有危险,是否需要暂时封锁?请通过计算进行说明.25.(10分)如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)若AB=21,AD=9,BC=CD=10,求AC的长.26.(10分)在中,点是边上的中点,过点作与线段相交的直线 ,过点作于,过点作于.(1)如图,如果直线过点,求证:;(2)如图,若直线不经过点,联结,,那么第问的结论是否成立?若成立,给出证明过程;若不成立,请说明理由.参考答案一、选择题(每小题3分,共30分)1、A【分析】根据AB∥CD,可得∠BAC=∠ACD,再加上公共边AC=AC,然后结合全等三角形的判定定理进行分析即可.【详解】:∵AB∥CD,∴∠BAC=∠ACD, A、添加BC=AD不能判定△ABC≌△CDA,故此选项符合题意; B、添加AB=CD可利用SAS判定△ABC≌△CDA,故此选项不合题意; C、添加AD∥BC可得∠DAC=∠BCD,可利用ASA判定△ABC≌△CDA,故此选项不合题意; D、添加∠B=∠D可利用AAS判定△ABC≌△CDA,故此选项不合题意;故答案为:A.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.2、B【分析】利用三角形三边关系判断即可,两边之和第三边两边之差.【详解】解:,,第三边能与,能组成三角形的是,故选.【点睛】考查了三角形三边关系,利用三边关系判断时,常用两个较小边的和与较大的边比较大小.两个较小边的和较大的边,则能组成三角形,否则,不可以.3、A【分析】根据“SAS”可添加BF=EC使△ABC≌△DEF.【详解】解:∵AB∥ED,AB=DE,∴∠B=∠E,∴当BF=EC时,可得BC=EF,可利用“SAS”判断△ABC≌△DEF.故选A.【点睛】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.4、D【分析】结合题意,根据分式、绝对值的性质,分、两种情况计算,即可得到答案.【详解】若,则∴∴∴,符合题意;若,则当时,无意义当时,∴,故不合题意∴故选:D.【点睛】本题考查了分式、绝对值的知识;解题的关键是熟练掌握分式、绝对值的性质,从而完成求解.5、D【解析】根据幂的加减和幂的乘方计算法则判断即可.【详解】A.,该选项错误;B. ,该选项错误;C. 不是同类项不可合并,该选项错误;D. ,该选项正确;故选D.【点睛】本题考查幂的加减和幂的乘方计算,关键在于熟练掌握基础运算方法.6、A【分析】根据平行四边形的性质可知AO=OC,OD=OB,据此求出AO、DO的长,利用勾股定理求出AD的长即可.【详解】解:∵四边形ABCD是平行四边形,AC=10,BD=6,∴OA=OC=AC=5,OB=OD=BD=3,∵∠ODA=90°,∴在Rt△ADO中,由勾股定理可知,,故选:A.【点睛】此题考查了平行四边形的性质:平行四边形的对角线互相平分,解题时还要注意勾股定理的应用.7、C【分析】根据三角形稳定性即可得答案.【详解】三角形具有稳定性,有着稳固、坚定、耐压的特点;而四边形不具有稳定性,易于变形.四个选项中,只有C选项是三角形,其他三个选项均为四边形,故答案为C.【点睛】本题考查的知识点是三角形稳定性.8、A【分析】过点D作DF⊥BC于F,DG⊥AC于G,根据折叠的性质可得CB=CE,∠BCD=∠ACD,然后根据角平分线的性质可得DF=DG,然后结合已知条件和三角形面积公式即可求出AC和CB,然后利用S△BCD+S△ACD=列出方程即可求出DG.【详解】解:过点D作DF⊥BC于F,DG⊥AC于G由折叠的性质可得:CB=CE,∠BCD=∠ACD∴CD平分∠BCA∴DF=DG∵∴CE:AC=5:8∴CB:AC=5:8即CB=∵∴解得:AC=8∴CB=∵S△BCD+S△ACD=∴即解得:DG=,即点到的距离是故选A.【点睛】此题考查的是折叠的性质、角平分线的性质和三角形的面积公式,掌握折叠的性质、角平分线的性质定理和三角形的面积公式是解决此题的关键.9、A【分析】根据题意:选取的a的值不满足,据此逐项验证即得答案.【详解】解:A、当a=﹣2时,,能说明命题“”是假命题,故本选项符合题意;B、当a=0时,,不能说明命题“”是假命题,故本选项不符合题意;C、当a=1时,,不能说明命题“”是假命题,故本选项不符合题意;D、当a=2时,,不能说明命题“”是假命题,故本选项不符合题意;故选:A.【点睛】本题考查了算术平方根的性质和举反例说明一个命题是假命题,正确理解题意、会进行验证是关键.10、B【解析】∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°﹣∠A=105°.∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=360°﹣105°=255°.故选B.点睛:本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n﹣2)×180°(n≥3且n为整数)是解题的关键.二、填空题(每小题3分,共24分)11、21【分析】根据△ABC和△BDE均为等边三角形,可得∠ABC=∠DBE=60°,AB=BC,BE=BD,由此证明∠CBD=60°,继而得到∠ABD=∠CBE=120°,即可证明△ABD≌△CBE,所以∠ADB=∠AEC,利用三角形内角和代入数值计算即可得到答案.【详解】解:∵△ABC和△BDE均为等边三角形,∴∠ABC=∠DBE=60°,AB=BC,BE=BD,∴∠CBD=60°,∴∠ABD=∠CBE=120°,在△ABD和△CBE中,∴△ABD≌△CBE,(SAS)∴∠AEC=∠ADB,∵∠ADB=180°-∠ABD-∠BAD=21。





