
2025学年云南省曲靖市麒麟区五中高二上数学期末监测试题含解析.doc
15页2025学年云南省曲靖市麒麟区五中高二上数学期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上用2B铅笔将试卷类型(B)填涂在答题卡相应位置上将条形码粘贴在答题卡右上角"条形码粘贴处"2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案答案不能答在试题卷上3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液不按以上要求作答无效4.考生必须保证答题卡的整洁考试结束后,请将本试卷和答题卡一并交回一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.已知椭圆上一点到左焦点的距离为,是的中点,则( )A.1 B.2C.3 D.42.已知直线过点,且与直线垂直,则直线的方程为( )A. B.C. D.3.已知直线与抛物线C:相交于A,B两点,O为坐标原点,,的斜率分别为,,则( )A. B.C. D.4.经过点且与直线垂直的直线方程为( )A. B.C. D.5.若方程表示焦点在轴上的双曲线,则角所在象限是( )A.第一象限 B.第二象限C.第三象限 D.第四象限6.若在直线上,则直线的一个方向向量为( )A. B.C. D.7.若,则下列不等式不能成立是()A. B.C. D.8.与的等差中项是()A. B.C. D.9.在各项都为正数的等比数列中,首项,前3项和为21,则( )A.84 B.72C.33 D.18910.已知是双曲线的左、右焦点,点P在C上,,则等于( )A.2 B.4C.6 D.811.已知等比数列的前项和为,公比为,则( )A. B.C. D.12.命题“若,则”的逆否命题是()A.若,则 B.若,则C.若,则 D.若,则二、填空题:本题共4小题,每小题5分,共20分。
13.若函数恰有两个极值点,则k的取值范围是______14.直线的倾斜角的取值范围是______.15.观察式子:,,,由此归纳,可猜测一般性的结论为______.16.以正方体的对角线的交点为坐标原点O建立右手系的空间直角坐标系,其中,,,则点的坐标为______三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)圆经过两点,且圆心在直线上.(1)求圆的方程;(2)求圆与圆的公共弦的长.18.(12分)设椭圆的左,右焦点分别为,其离心率为,且点在C上.(1)求C的方程;(2)O为坐标原点,P为C上任意一点.若M为的中点,过M且平行于的直线l交椭圆C于A,B两点,是否存在实数,使得?若存在,求值;若不存在,说明理由.19.(12分)某保险公司根据官方公布的历年营业收入,制成表格如下:表1年份2011201220132014201520162017201820192020年份序号x12345678910营业收入y(亿元)0.529.3633.6132352571912120716822135由表1,得到下面的散点图:根据已有的函数知识,某同学选用二次函数模型(b和a是待定参数)来拟合y和x的关系.这时,可以对年份序号做变换,即令,得,由表1可得变换后的数据见表2.表2T149162536496481100Y0.529.3633.6132352571912120716822135(1)根据表中数据,建立y关于t的回归方程(系数精确到个位数);(2)根据(1)中得到的回归方程估计2021年的营业收入,以及营业收入首次超过4000亿元的年份.附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,.参考数据:.20.(12分)已知函数(1)讨论的单调性:(2)若对恒成立,求的取值范围21.(12分)已知公差不为零的等差数列中,,且,,成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)若,求数列的前项和.22.(10分)已知数列的首项,其前n项和为,且满足.(1)求数列的通项公式;(2)设,数列的前n项和为,且,求n.参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1、A【解析】由椭圆的定义得,进而根据中位线定理得.【详解】解:由椭圆方程得,即,因为由椭圆的定义得,,所以,因为是的中点,是的中点,所以.故选:A2、A【解析】求出直线斜率,利用点斜式可得出直线的方程.【详解】直线的斜率为,则直线的斜率为,故直线的方程为,即.故选:A.3、C【解析】设,,由消得:,又,由韦达定理代入计算即可得答案.【详解】设,,由消得:,所以,故.故选:C【点睛】本题主要考查了直线与抛物线的位置关系,直线的斜率公式,考查了转化与化归的思想,考查了学生的运算求解能力.4、A【解析】根据点斜式求得正确答案.【详解】直线的斜率为,经过点且与直线垂直的直线方程为,即.故选:A5、D【解析】根据题意得出的符号,进而得到的象限.【详解】由题意,,所以在第四象限.故选:D.6、D【解析】由题意可得首先求出直线上的一个向量,即可得到它的一个方向向量,再利用平面向量共线(平行)的坐标表示即可得出答案【详解】∵ 在直线上,∴ 直线的一个方向向量,又∵,∴是直线的一个方向向量故选:D7、C【解析】利用不等式的性质可判断ABD,利用赋值法即可判断C,如.【详解】解:因为,所以,所以,,,故ABD正确;对于C,若,则,故C错误.故选:C.8、A【解析】代入等差中项公式即可解决.【详解】与的等差中项是故选:A9、A【解析】分析:设等比数列的公比为,根据前三项的和为列方程,结合等比数列中,各项都为正数,解得,从而可以求出的值.详解:设等比数列的公比为, 首项为3,前三项的和为,,解之得或,在等比数列中,各项都为正数,公比为正数,舍去),,故选A.点睛:本题考查以一个特殊的等比数列为载体,通过求连续三项和的问题,着重考查了等比数列的通项,等比数列的性质和前项和等知识点,属于简单题.10、D【解析】根据双曲线定义写出,两边平方代入焦点三角形的余弦定理中即可求解【详解】双曲线,,所以,根据双曲线的对称性,可假设在第一象限,设,则,所以,,在中,根据余弦定理:,即,解得:,所以故选:D11、D【解析】利用等比数列的求和公式可求得的值.【详解】由等比数列的求和公式可得,解得.故选:D.12、C【解析】根据逆否命题的定义写出逆否命题即得【详解】解:以否定的结论作条件、否定的条件作结论得出的命题为原命题的逆否命题,即“若,则”的逆否命题是“若,则”故选:C二、填空题:本题共4小题,每小题5分,共20分。
13、【解析】求导得有两个极值点等价于函数有一个不等于1的零点,分离参数得,令,利用导数研究的单调性并作出的图象,根据图象即可得出k的取值范围【详解】函数的定义域为,,令,解得或,若函数有2个极值点,则函数与图象在上恰有1个横坐标不为1的交点,而,令,令或,故在和上单调递减,在上单调递增,又,如图所示,由图可得.故答案为:14、【解析】先求出直线的斜率取值范围,再根据斜率与倾斜角的关系,即可求出【详解】可化为:,所以,由于,结合函数在上的图象,可知故答案为:【点睛】本题主要考查斜率与倾斜角的关系的应用,以及直线的一般式化斜截式,属于基础题15、【解析】根据规律,不等式的左边是个自然数倒数的平方的和,右边分母是以2为首项,1为公差的等差数列,分子是以3为首项,2为公差的等差数列,由此可得结论【详解】解:观察可以发现,第个不等式左端有项,分子为1,分母依次为,,,,;右端分母为,分子成等差数列,首项为3,公差为2,因此第个不等式()故答案为:()16、【解析】根据已知点的坐标,确定出坐标系即可得【详解】如图,由已知得坐标系如图所示,轴过正方形的对角线交点,轴过中点,轴过中点,因此可知坐标为故答案为:三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤17、(1) (2)【解析】(1)设圆的方程为,代入所过的点后可求,从而可求圆的方程.(2)利用两圆的方程可求公共弦的方程,利用垂径定理可求公共弦的弦长.【小问1详解】设圆的方程为,,,所以圆的方程为;【小问2详解】由圆的方程和圆的方程可得公共弦的方程为:,整理得到:,到公共弦距离为,故公共弦的弦长为:.18、(1); (2).【解析】(1)列出关于a、b、c的方程组求解即可;(2)直线l斜率不存在时,易得λ的值;斜率存在时,设l方程为,联立直线l与椭圆C的方程,求出;求出OP方程,联立OP方程与椭圆C的方程,求出;代入即可求得λ.【小问1详解】由已知可得,解得,∴椭圆C的标准方程为.【小问2详解】若直线的斜率不存在时,,∴;当斜率存在时,设直线l的方程为.联立直线l与椭圆方程,消去y,得,∴.∵,设直线的方程为,联立直线与椭圆方程,消去y,得,解得.∴,∴,同理,∴,∵,∴,故,存在满足条件,综上可得,存在满足条件.【点睛】关键点点睛:本题的关键在于弦长公式的运用,AB斜率为k,,M(1,0),则,,,将弦长之积转化为韦达定理求解.19、(1);(2)估计2021年的营业收入约为2518亿元,估计营业收入首次超过4000亿元的年份为2025年.【解析】(1)根据的公式,将题干中的数据代入,即得解;(2)代入,可估计2021年的营业收入;令,可求解的范围,继而得到的范围,即得解【详解】(1),,故回归方程为.(2)2021年对应的t的值为121,营业收入,所以估计2021年的营业收入约为2518亿元.依题意有,解得,故.因为,所以估计营业收入首次超过4000亿元的年份序号为14,即2025年.20、(1)答案不唯一,具体见解析 (2)【解析】(1)求导得,在分,两种情况讨论求解即可;(2)根据题意将问题转化为对恒成立,进而构造函数,求解函数最值即可.【小问1详解】解:函数的定义域为,当时,令,得,令,得;当时,令,得,令,得综上,当时,在上单调递减,在上单调递增;当时,在上单调递增,在上单调递减【小问2详解】解:由(1)知,函数在上单调递增,则,所以对恒成立等价于对恒成立设函数,则,设,则,则在上单调递减,所以,则,所以在上单调递减,所以;故,即的取值范围是21、(1)(2)【解析】(Ⅰ)将数列中的项用和表示,根据等比数列的性质可得到关于的一元二次方程可求得的值,即。












