
《计数原理》集体备课.docx
12页课题计数原理 新授课教 学 目标知识与技能1. 准确理解分类加法计数原理与分步乘法计数原理,弄清它们的区别;2. 会利用两个原理分析和解决一些简单的应用问题.过程与方法1. 培养学生的归纳概括能力,提高他们分析问题和解决问题的能力;2. 培养学生比较,类比,归纳等数学思想方法和灵活运用的能力.情感、态度、 价值观通过两个原理的学习,感受数学模型的概括性,典型性和普遍性,体会分析,比 较类比归纳等数学思想.重 点分类加法计数原理和分步乘法计数原理.难点怎样合理地进行分类、分步,特别是分类时重复不漏,分步做到步骤完整教 学 过 程学法指导吃透考纲, 做到心中有 数,有的放 矢,提高学 生分析问 题、解决问 题的能力.课标要求第一章计数原理《标准》内容:分类加法计数原理、分步乘法计数原理、排列、组合、二项式定理通过计数原理的教学,使学生掌握两个基本计数原理、排列、组合、二项式定理及其应用, 会解决简单的计数问题;体验计数与现实生活的联系,充分体会两个基本计数原理在解决实际 问题时的工具作用.《标准》要求:(1) 分类加法计数原理、分步乘法计数原理通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择 分类加法计数原理或分步乘法计数原理解决一些简单的实际问题(2) 排列与组合通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能 解决简单的实际问题.(3) 二项式定理能用计数原理证明二项式定理;会用二项式定理解决与二项展开式有关的简单问题考纲分析2011年山东省高考数学考试大纲(理工类)考试范围是《普通高中数学课程标准(实验)》中的必修课程内容和选修系列2 的内容以及选修系列4-5的部分内容,内容如下:数学1:集合、函数概念与基本初等函数I (指数函数、对数函数、幕函数).数学2:立体几何初步、平面解析几何初步.数学3:算法初步、统计、概率.数学4:基本初等函数11(三角函数)、平面上的向量、三角恒等变换.数学5:解三角形、数列、不等式.集思广益群策群力选修2-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何.选修2-2:导数及其应用、推理与证明、数系的扩充与复数的引入.选修2-3:计数原理、统计案例、概率.选修4-5:不等式的基本性质和证明的基本方法.附:山东省2010年高考真题知识点分布及分值分布特点:学法指导高考数学理 科文大纲科代数部分集合与简易逻辑复数函数与导数三角函数解三角形数列不等式线性规划算法与框图统计题 分 值(1) (9) 10(2) 5(4)(?)(11) 29(22)(15)(17) 16(10) 12(10) (14) 9(13) 4题 分(1) (7)(2)(3)(5)(0)(10)(11)(21)(15) (17)(IS)(14)(13)(6)值105371612444明确各部分在高考中所 占的比重.概率分布(5) (20) 17(19)12计数原理—项式定 理平面向量(0) 5(12) 5(12)5直线与圆(16) 4(16)4圆锥曲线(21) 12(22)14立体几何 初步壹体几何(3) 5(19) 12(3)(20)512备注:红色标注的地方为历年高考真题中以大题形式考查的内容、题号及分学法指导高考考什么?高考怎么 考?学法指导培养学生逐 步形成“观 察——类比 ——猜想一 —质疑 验证——应 用”获取知 识的手段和 方法.值分布.教材分析|计数问题是数学中的重要研究对象之一,分类加法计数原理、分步乘法计数原 理是排列组合问题的最基本的原理,是推导排列数、组合数公式的理论依据,也是 求解排列、组合问题的基本思想.本节课内容是学生在已有的利用列举法进行计数 的基础上,进一步研究计数的规律,归纳出两种基本计数原理.从思想方法的角度 看,一个是将问题进行分类思考,一个是将问题进行分步思考,从而达到分解 问题、解决问题的目的.本节课由浅入深、螺旋上升,由特殊到一般,培养学生的 抽象概括能力.所以,无论在知识的结构上,还是对学生的能力培养上,本节课都 有十分重要的作用.考题展示1. (2010 •山东高考理科・T8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲 必须排在前两位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序 的编排方案共有(A) 36 种 (B) 42 种 (C)48 种 (D) 54 种【命题立意】本题考查排列组合的基础知识,考查分类与分步计数原理,考查了考生的分析问 题解决问题的能力和运算求解能力.【思路点拨】根据甲的位置分类讨论.【规范解答】选B,分两类:第一类:甲排在第一位,共有4X3X2X1 = 24种排法;第二类:甲排在第二位,共有3X3X2X1 = 18种排法,所以共有编排方案24 +18 = 42种,故选B.2. (2010 •天津高考理科・T10)如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色, 要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用(A) 288 种 (B) 264 种 (C) 240 种 (D) 168 种【命题立意】本题考查分类计数原理,排列组合等基础知识,考查分析问题、解决问题的能力【思路点拨】先分步再排列【规范解答】先涂色点E,有4种涂法,再涂点B,有两种可能:1、 B与E相同时,依次涂点F,C,D,A,涂法分别有3,2,2,2种;2、 B与E不相同时有3种涂法,再依次涂F、C、D、A点,涂F有2种涂法,涂C点时又有两种可能:(1) C与E相同,有1种涂法,再涂点D,有两种可能:① D与B相同,有1种涂法,最后涂A有2种涂法;② D与B不相同,有2种涂法,最后涂A有1种涂法.(2) C与E不相同,有1种涂法,再涂点D,有两种可能:① D与B相同,有1种涂法,最后涂A有2种涂法;② D与B不相同,有2种涂法,最后涂A有1种涂法.所以不同的涂色方法有4x{3x2x2x2 + 3x2x[1x(1x2 + 1x2) + 1x(1x2 + 1x 1)]} = 4x(24 + 42) = 264 .【方法技巧】解题的关键是处理好相交线端点的颜色问题,解决排列组合应用题,要做到合理 的分类,准确的分类,才能正确的解决问题.3. (2010 •浙江高考理科・T17)有4位同学在同一天的上、下午参加“身高与体重”、“立 定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个 项目,且不重复.若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各 测试一人.则不同的安排方式共有—种(用数字作答).【命题立意】本题考查排列组合的相关知识,考查数学的应用能力【思路点拨】可以先安排上午的测试项目,再安排下午【规范解答】记4位同学分别为:A、B、C、D.则上午共有A: =24种安排方式.不妨先假定上午如表格所示安排方式,项目身高与体重立定跳远肺活量握力台阶上午ABCXD下午X则下午可如下安排:BADC、BCAD、BCDA、BDAC、CABD、CADB,CDAB、CDBA,DABC、DCAB、DCBA, 共11种安排方式.因此,全天共有24 x 11 =264种安排方式.答案:264.【方法技巧】解决排列组合问题时,常用的技巧:(1)特殊位置优先安排;(2)合理分类与准 确分步.4. (2010 •广东高考理科・T8)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪 亮的顺序不固定,每个彩灯彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯 商量的颜色各不相同.记这这5个彩灯有序地闪亮一次为一个闪烁,在每个闪烁中,每秒钟有且 仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5妙.如果要实现所有不同的闪烁,那么需 要的时间至少是A、1205 秒 B.1200 秒 C.1195 秒 D.1190 秒名每同学可自由选择其中的一学法指导D. 6 x 5 x 4 x 3 x 2回忆旧知, 吸引学生的 注意力;为 新课的传授 作必要的铺 垫.【命题立意】本题考察排列的综合问题. 学法指导【规范解答】选C每次闪烁时间为5秒,共5X120 = 6005,每两次闪烁之间的间隔为5s,共5x (120-1) = 595s,总共就有600 + 595 = 1195s.5. (2010湖北文)现有名同学支听同时进行的个课外知识讲座,个讲座,不同选法的种数是l / 5 x 6 x 5 x 4 x 3 x 2A. 54 B. 65 C. 2【答案】A【解析】因为每位同学均有%伸讲座可选择,所以6位同学共有 种,故R正确.问题1:从北京到上海,可以乘火车,也可以乘汽车.一天中火车有3班,汽车有2班.那么 一天中,乘坐这些交通工具从北京到上海共有多少种不同的走法?对于这个问题,首先要弄清楚这道题是要完成从北京到上海这件事,只要从北京到上海, 就算完成了这件事.其次,从北京到上海有几类走法?可以分两类走法,一类是乘火车,另一类 是乘汽车,其中,乘火车有3种走法,乘汽车有两种走法.第三,无论乘哪班火车或汽车,都能 从北京直接到达上海.考情分析从考情分 析、考点预 测等方面进 一步把握高考动向.两个计数原理是排列、组合的基础,又是古典概率的必要工具,在每年的高考中都直接或 间接考查,多在选择、填空题中出现,属中档或较难题目.考点预测两个计数原理主要用来解决数字问题、人和物的搭配问题、几何问题、集合问题、分配问 题、涂色问题等,弄清两个原理的区别与联系是正确使用这两个原理的前提和条件.对于较复杂 的问题,一般要分类讨论,此时要注意分类讨论的对象和分类讨论的标准.预测2011年高考仍会 延续以往的高考特点,以选择、填空题中出现,分值在5分左右.学情分析|对分类计数原理和分步计数原理的理解,学生往往有困难,或是停留在一种朴 素的阶段.使学生切实理解分类加法计数原理与分步乘法计数原理的概念是上好 本节课的关键,可多设置问题情境,用一些具体的、生活中的实例来帮助学生理 解.教法设计教学中,应通过实例,引导学生总结出分类加法计数原理和分步乘法计数原理,引导学生根 据计数原理分析、处理问题,而不应机械地套用公式.同时,应避免繁琐的、技巧性过高的计数 原理.学法指导让学生自主去探索,获取结论.通过比较分析分类加法计数原理与分步乘法计数 原理的差异.分类加法计数原理中每类方法都能独立完成某件事;分步乘法计数原 理中必须每步都做了,才能完成某件事.新课引入同学们,今天我们学习分类计数原理与分步计数原理,那么什么是分类计数原理和分步计数 原理呢?首先我们看第一个问题:问题2:商场里有上衣和裤子两类服装,其中上衣有三种颜色,裤子有两种颜色,从这家商 场里任买一件衣服,有多少种不同的选法?这两个问题中,要完成一件事,都有两类不同的办法,每一类办。












