
2024届中考数学考前《终讲·终练·终卷》冲刺高分突破(全国通用)第08讲:方程、不等式的实际应用问题 原卷版.docx
13页第08讲:方程、不等式的实际应用问题【题型精讲】题型一:一元一次方程的实际问题1.(2024·广西钦州·二模)《孙子算经》中记载了这样一道题:”今有百鹿进城,每家取一鹿,不尽,又三家合取一鹿,恰尽”.问:有多少户人家?大意为:有100头鹿,首先每户分一头鹿,发现还有剩余,将剩下的鹿给每3户共分一头,恰好分完,若设共有户,则下列方程正确的是( )A. B. C. D.2.(2024·黑龙江哈尔滨·三模)火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图像描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为150米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论有( )A.1个 B.2个 C.3个 D.4个3.(2024·云南楚雄·二模)云南蒙自石榴是全国特色水果之一,是全国农产品地理标志.它的果实呈浅红色,果肉挺实,丰厚鲜美,甜酸娇嫩,口感宜人,有清热解毒、良性收敛肌肤等功效,深受群众喜爱,成为人们日常生活中不可缺少的美食.小红到水果批发市场购买石榴,店里标注石榴每千克20元,她与老板经过议价,老板同意在购买很多的情况下,按原价打九折卖给小红.称完质量后,老板告诉小红:“你比上一位顾客多买了5千克,打折后你比他按原价购买还少花10元.”则小红购买石榴的质量是( )A.45千克 B.50千克 C.55千克 D.60千克题型二:二元一次方程组的实际问题4.(2024·四川南充·二模)我国明代数学著作《算法统宗》记载:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤”(注:古秤十六两为一斤,故有“半斤八两”这一成语).其大意是:隔着墙壁听见客人在分银两,不知人数不知银两的数量,若每人分七两,还多四两;若每人分九两,则不足八两”.若设共有名客人,两银子,可列方程组为( )A. B. C. D.5.(2024·湖北荆州·模拟预测)《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为( )A. B.C. D.6.(2024·四川达州·一模)“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡图各几何”是《孙子算经》卷中著名数学问题.意思是:鸡兔同笼,从上面数,有35个头;从下面数,有94条腿.问鸡兔各有多少只?若设鸡有只,兔有只,则所列方程组正确的是( )A. B. C. D.题型三:分式方程的实际问题7.(2024·四川南充·三模)近年来,电动汽车因环保、低噪、节能等优势深受顾客喜爱.经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每千米的充电费比燃油车平均每千米的加油费少0.4元,若充电费和加油费均为200元时,电动汽车可行驶的总路程是燃油汽车的5倍,求这款电动汽车平均每千米的充电费.设这款电动汽车平均每千米的充电费为元,据题意可得方程( )A. B.C. D.8.(2024·湖南衡阳·二模)某班学生去距学校的博物馆参观,一部分学生骑自行车先走,过了后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,设骑车学生的速度为,下列方程正确的是( )A. B. C. D.9.(2024·福建福州·模拟预测)某校决定开展名著阅读活动,用3600元购买“四大名著”若干套后,发现这批图书满足不了学生的阅读需求,图书管理员在购买第二批时正赶上图书城八折销售该套书,于是用2400元购买的套数只比第一批少4套,设第一批购买的“四大名著”每套的价格为x元,则符合题意的方程是( )A. B.C. D.题型四:不等式(组)的实际应用问题10.(2024·河北唐山·二模)某电梯乘载的重量超过300公斤时会响起警示音,且小华、小欧的体重分别为45 公斤、70公斤.小华、小欧依序最后进入电梯,小华走进后,警示音没响,小欧走进后,警示音响起.设两人没进入电梯前已乘载的重量为x 公斤,则x 满足( )A. B.C. D.11.(2024·天津红桥·三模)某服装店试销一种成本为每件60元的服装,规定试销期间每件服装的销售单价不低于成本,且获得的利润不得高于成本的.经试销发现,销售量y(件)与销售单价x(元)符合一次函数关系.有下列结论:①销售单价可以是90元;②该服装店销售这种服装可获得的最大利润为891元;③销售单价有两个不同的值满足该服装店销售这种服装获得的利润为500元,其中,正确结论的个数是( )A.0 B.1 C.2 D.312.(2024·浙江台州·二模)州市域铁路线台州站至城南站全长 理论票价实行里程分段计价制,理论票价(单位:元)与行驶里程(单位:)之间的函数关系如图(,为线段),但在定价时,按该分段计价制所得结果常为小数,实际票价为大于或等于该值的最小整数,如当行驶里程为 时,所得理论票价为元,实际票价则为元,经查从甲站到乙站的实际票价为元,则甲乙两站的里程不可能为( ) A.44 km B.45 km C.46 km D.47 km题型五:一元二次方程的实际问题13.(2024·山西晋城·三模)山西省所有公立医疗机构于2024年3月25日起全面执行第九批国家组织药品集中带量采购中选结果.相关负责人表示,重点药品降价将明显减轻患者负担,某药品通过连续两轮降价,每粒(25mg)从200元降至15元若该药品每轮降价率相同,设每轮降价率为x,则根据题意可列方程为( )A. B.C. D.14.(2024·安徽合肥·二模)自2016年我国正式实施全面两孩政策以来,合肥市学龄儿童人数逐年增长,某校2021年新生入学人数是600人,2023年新生入学人数达到726人,若设入学人数的年平均增长率为,则以下方程正确的是( )A. B.C. D.15.(2024·山西晋中·二模)某旅游景点的商场销售一款山西文创产品,平均每天可售出件,每件获利元.为了尽快减少库存,商场决定采取适当的降价措施.调查发现,如果这款文创产品的售价每降低元,那么平均每天可多售出件.商场要想平均每天获利元,这款文创产品每件应降价多少元?设这款文创产品每件降价元,根据题意可列方程为( )A. B.C. D.题型六:中考数学实际应用题16.(2024·湖北宜昌·模拟预测)麻花是我国的一种特色油炸面食小吃,色、香、味俱全,品种多样,十分畅销.阳光超市购进了一批麻花礼盒进行销售,成本价为30元/件,根据市场预测,在一段时间内,销售单价为40元/件时,每天的销售量为300件,销售单价每提高10元/件,将少售出50件.(1)求超市销售该麻花礼盒每天的销售量y(件)与销售单价x(元/件)之间的函数关系式;(2)当销售单价定为多少时,超市销售该麻花礼盒每天获得的利润最大?并求出最大利润;(3)若超市销售该麻花礼盒每天要获得不低于5000元的利润,但物价部门规定,销售该麻花礼盒的利润率不得高于,该超市应如何确定销售单价.17.(2024·湖北恩施·模拟预测)【综合与实践】数学来源于生活,同时数学也服务于生活.【知识背景】如图,校园中有两面直角围墙,墙角内的处有一棵古树与墙的距离分别是和,在美化校园的活动中,某数学兴趣小组想借助围墙(两边足够长),用长的篱笆围成一个矩形花园(篱笆只围两边),设.【方案设计】设计一个矩形花园,使之面积最大,且要将这棵古树围在花园内(含边界,不考虑树的粗细).【解决问题】思路:把矩形的面积与边长(即的长)的函数解析式求出,并利用函数的性质来求面积的最大值即可.(1)请用含有的代数式表示的长;(2)花园的面积能否为?若能,求出的值;若不能,请说明理由:(3)求面积与的函数解析式,写出的取值范围;并求当为何值时,花园面积最大?18.(2024·黑龙江哈尔滨·三模)为全面贯彻党的教育方针,严格落实教育部对中小学生“五项管理”的相关要求和《关于进一步加强中小学生体质健康管理工作的通知》精神,保障学生每天在校1小时体育活动时间,某班计划采购A、B两种类型的羽毛球拍.已知购买3副A型羽毛球拍和4副B型羽毛球拍共需248元;购买5副A型羽毛球拍和2副B型羽毛球拍共需264元.(1)求A、B两种类型羽毛球拍的单价.(2)该班准备采购A、B两种类型的羽毛球拍共30副,且购买的总费用不高于1160元,最多购买A型羽毛球拍多少副?19.(2024·湖北恩施·三模)随着旅游业的发展,某地的烤活鱼走进了广大群众的视野,深受游客们的喜爱,五一期间某公司为满足供货需求,提前从甲地购买海鲜、蔬菜、肉类三种物资共100吨,计划组织20辆汽车装运,要求20辆汽车都要装运,每辆汽车只能装运同一种物资且必须装满,每种物资至少装运1辆车,每辆汽车的运载量和每吨所需运费如下表.物资种类肉类海鲜蔬菜每辆汽车运载量/吨654每吨所需运费/元120160100(1)设x辆汽车装运肉类,y辆汽车装运海鲜,用含x,y的式子填写下表;物资种类肉类海鲜蔬菜装运汽车数量(辆)xy______装运物品的总量(吨)6x____________(2)已知100吨物资恰好运完,试求y与x的函数关系式,并求出共有多少种装运方案;(3)请求出在(2)的条件下怎样装运花费费用最少?最少费用是多少?20.(2024·山西朔州·模拟预测)2024年3月28日小米发布了自己的首款新能源汽车小米,上市首日27分钟内大定突破5万台,上市24小时大定88898台,为提高产能工厂决定招聘一些无经验的新工人和有过相关工作经验的熟练工,经过调研发现2名熟练工和3名新工人每月可安装12辆电动汽车;3名熟练工和2名新工人每月可安装13辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)工厂计划招聘400名员工,计划一个月至少生产安装1000台汽车.工厂给安装电动汽车的每名熟练工每月发6200元的工资,给每名新工人每月发5600元的工资,为按时完工工厂应招聘多少名新工人,同时工厂每月支出的工资总额W(元)尽可能地少?【专题精练】一、单选题21.(2024·黑龙江佳木斯·三模)直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现每件小商品售价每降低1元,日销售量增加2件.若日利润保持不变.商家想尽快销售完该款商品.每件售价应定为多少元( )A.45 B.50 C.55 D.6022.(2024·山西吕梁·模拟预测)2024年4月3日,太原广播电视台携手柳州市融媒体中心推出《柳侯之风嘉惠双城——柳州-太原清明节双城联动大型融媒体直播》节目,受到了社会各界的关注,在直播中,他们为观众准备了一批“惊喜盲盒”.如图,制作该盲盒的矩形纸板的宽为,剪去两个矩形和一个正方形(阴影部分)后,沿虚线折起即可制成一个有盖的长方体纸盒.若矩形A的面积为,正方形B的边长为,则根据题意可列方程为( )A. B.C. D.23.(2024·云南德宏·一模)某市为助力新能源汽车产业的健康发展,打造新能源交通生态城市,近几年在全市范围内安装电动汽车充电桩.第一期该市投入资金万元,安装型充电桩个和型充电桩个;第二期又投入万元,安装型充电桩个和型充电桩个.。












