
广东省广州市2024年数学九上开学检测模拟试题【含答案】.doc
32页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………广东省广州市2024年数学九上开学检测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列运算正确的是( )A.÷=2 B.2×3=6C.+= D.3﹣=32、(4分)教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、1.应该选( )参加.A.甲 B.乙 C.甲、乙都可以 D.无法确定3、(4分)如图,在▱ABCD中,BE⊥AD于点E,BF⊥CD于点F,若BE=2,BF=3,▱ABCD的周长为20,则平行四边形的面积为( )A.12 B.18 C.20 D.244、(4分)下列因式分解正确的是( )A.2x2+4x=2(x2+2x) B.x2﹣y2=(x+y)(x﹣y)C.x2﹣2x+1=(x﹣2)2 D.x2+y2=(x+y)25、(4分)若一个等腰直角三角形的面积为8,则这个等腰三角形的直角边长为( )A.2 B.4 C.4 D.86、(4分)如图,▱ABCD的对角线AC、BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO的周长是( )A.18 B.10 C.9 D.87、(4分)如图,已知中,,,将绕点顺时针方向旋转到的位置,连接,则的长为( )A. B. C. D.8、(4分)下列方程中,是关于x的一元二次方程的是( ).A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若分式的值为0,则x =_________________.10、(4分)如图,在中,,点D,E,F分别是AB,AC,BC边上的中点,连结BE,DF,已知则_________.11、(4分)如图,点B段AC上,且BC=2AB,点D,E分别是AB,BC的中点,分别以AB,DE,BC为边,段AC同侧作三个正方形,得到三个平行四边形(阴影部分).其面积分别记作S1,S2,S3,若S1+S3=15,则S2=_____.12、(4分)如图,正方形ABCD的顶点A,B在x轴的正半轴上,对角线AC,BD交于点P,反比例函数的图象经过P,D两点,则AB的长是______.13、(4分)如图,菱形ABCD的对角线AC=3cm,BD=4cm,则菱形ABCD的面积是_____.三、解答题(本大题共5个小题,共48分)14、(12分)(1)因式分解:;(2)计算:15、(8分)如图1.点D,E在△ABC的边BC上.连接AD.AE.①AB=AC:②AD=AE:③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论.构成三个命题:①②③;①③②,②③①.(1)以上三个命题是真命题的为(直接作答)__________________;(2)选择一个真命题进行证明(先写出所选命题.然后证明).16、(8分)如图,是等边三角形,,点是射线上任意点(点与点不重合),连接,将线段绕点顺时针旋转得到线段,连接并延长交直线于点. (1)如图①,猜想的度数是__________;(2)如图②,图③,当是锐角或钝角时,其他条件不变,猜想的度数,并选取其中一种情况进行证明;(3)如图③,若,,,则的长为__________.17、(10分)为了对学生进行多元化的评价,某中学决定对学生进行综合素质评价设该校中学生综合素质评价成绩为x分,满分为100分评价等级与评价成绩x分之间的关系如下表:中学生综合素质评价成绩中学生综合素质评价等级A级B级C级D级现随机抽取该校部分学生的综合素质评价成绩,整理绘制成图、图两幅不完整的统计图请根据相关信息,解答下列问题:(1)在这次调查中,一共抽取了______名学生,图中等级为D级的扇形的圆心角等于______;(2)补全图中的条形统计图;(3)若该校共有1200名学生,请你估计该校等级为C级的学生约有多少名.18、(10分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:(1)慢车的速度为 km/h,快车的速度为 km/h;(2)解释图中点C的实际意义并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500km.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,中,,,的垂直平分线分别交、于、,若,则________.20、(4分)如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=20°,则∠2=_____.21、(4分)如图,已知点A是第一象限内横坐标为的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是_____.22、(4分)对于任意非零实数a,b,定义“☆”运算为:a☆b=,若(x+1)☆x+(x+2)☆(x+1)+(x+3)☆(x+2)+…+(x+2018)☆(x+2017)=,则x=_____.23、(4分)已知直角三角形的周长为14,斜边上的中线长为3. 则直角三角形的面积为________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在平行四边形ABCD中,O是AB的中点,连接DO并延长交CB的延长线于点E,连接AE、DB.(1)求证:△AOD≌△BOE;(2)若DC=DE,判断四边形AEBD的形状,并说明理由.25、(10分)如图,以矩形的顶点为坐标原点,所在直线为轴,所在直线为轴,建立平面直角坐标系,已知,,将矩形绕点逆时针方向放置得到矩形.(1)当点恰好落在轴上时,如图1,求点的坐标.(2)连结,当点恰好落在对角线上时,如图2,连结,.①求证:.②求点的坐标.(3)在旋转过程中,点是直线与直线的交点,点是直线与直线的交点,若,请直接写出点的坐标.26、(12分)已知三角形纸片ABC,其中∠C=90°,AB=10,BC=6,点E,F分别是AC,AB上的点,连接EF.(1)如图1,若将纸片ABC沿EF折叠,折叠后点A刚好落在AB边上点D处,且S△ADE=S四边形BCED,求ED的长;(2)如图2,若将纸片ABC沿EF折叠,折叠后点A刚好落在BC边上点M处,且EM∥AB.①试判断四边形AEMF的形状,并说明理由;②求折痕EF的长.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】根据二次根式的除法法则对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的加减法对C、D进行判断.【详解】解:A、原式==2,所以A选项正确;B、原式=6×2=12,所以B选项错误;C、与不能合并,所以C选项错误;D、原式=2,所以D选项错误.故选:A.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.2、A【解析】试题分析:由题意可得,甲的平均数为:(9+8+7+7+9)÷5=8;方差为:=0.8乙的平均数为:(10+8+9+7+1)÷5=8;方差为:=2;∵0.8<2,∴选择甲射击运动员,故选A.考点:方差.3、A【解析】根据平行四边形的周长求出AD+CD,再利用面积列式求出AD、CD的关系,然后求出AD的长,再利用平行四边形的面积公式列式计算即可得解.【详解】解:∵▱ABCD的周长为20,∴2(AD+CD)=20,∴AD+CD=10①,∵S▱ABCD=AD•BE=CD•BF,∴2AD=3CD②,联立①、②解得AD=6,∴▱ABCD的面积=AD•BE=6×2=1.故选:A.本题考查平行四边形的性质,解题的关键是掌握平行四边形的性质.4、B【解析】把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式,是否最简整式是关键和左右两边等式是否相等来判断【详解】A .2x2+4x=2(x2+2x)中(x2+2x)不是最简整式,还可以提取x,故A错误。
B. x2﹣y2=(x+y)(x﹣y)既是最简,左右两边又相等,所以B正确C. x2﹣2x+1=(x﹣2)2满足了最简相乘,但是等式左右两边不相等D. x2+y2=(x+y)2满足了最简相乘,但是等式左右两边不相等主要考查因式分解的定义和整式的乘法5、C【解析】设等腰直角三角形的直角边长为x,根据面积为8,可列方程求解.解;设等腰直角三角形的边长为x,x2=8,x=1或x=-1(舍去).所以它的直角边长为1.故选C.“点睛”本题考查等腰直角三角形的性质,等腰直角三角形的两个腰相等,两腰夹角为90°,根据面积为8可列方程求解.6、C【解析】首先判断OE是△ACD的中位线,再由O,E分别为AC,AD的中点,得出,DE=AD=BC,DO=BD,AO=CO,再由△BCD的周长为18,可得OE+OD+ED=9,这样即可求出△DEO的周长.【详解】解:∵E为AD中点,四边形ABCD是平行四边形,∴DE=AD=BC,DO=BD,AO=CO,∴OE=CD,∵△BCD的周长为18,∴BD+DC+BC=18,∴△DEO的周长是DE+OE+DO=(BC+DC+BD)=×18=9,故选:C.考核知识点:本题考查了平行四边形的性质及三角形的中位线定理,解答本题注意掌握中位线的性质及平行四边形对边相等、对角线互相平分的性质.7、B【解析】连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD-C′D计算即可得解.【详解】解:如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中, ,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,,∴AB= =4,∴BD= ,C′D=2,∴BC′=BD-C′D=.故选B.本题考查旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的。












