好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

抛物线经典性质总结(共12页).doc

12页
  • 卖家[上传人]:des****85
  • 文档编号:227395964
  • 上传时间:2021-12-20
  • 文档格式:DOC
  • 文档大小:399.50KB
  • / 12 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 精选优质文档-----倾情为你奉上抛物线抛物线xyOlFxyOlFlFxyOxyOlF定义平面内与一个定点和一条定直线的距离相等的点的轨迹叫做抛物线,点叫做抛物线的焦点,直线叫做抛物线的准线{=点M到直线的距离}范围对称性关于轴对称关于轴对称焦点(,0)(,0)(0,)(0,)焦点在对称轴上顶点离心率=1准线方程准线与焦点位于顶点两侧且到顶点的距离相等顶点到准线的距离焦点到准线的距离焦半径焦点弦长oxFy焦点弦的几条性质以为直径的圆必与准线相切若的倾斜角为,则若的倾斜角为,则 切线方程1. 直线与抛物线的位置关系  直线,抛物线,  ,消y得:(1)当k=0时,直线与抛物线的对称轴平行,有一个交点;(2)当k≠0时, Δ>0,直线与抛物线相交,两个不同交点; Δ=0, 直线与抛物线相切,一个切点; Δ<0,直线与抛物线相离,无公共点3) 若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定)(4)2. 关于直线与抛物线的位置关系问题常用处理方法直线: 抛物线,1  联立方程法: 设交点坐标为,,则有,以及,还可进一步求出, 在涉及弦长,中点,对称,面积等问题时,常用此法,比如a. 相交弦AB的弦长 或 b. 中点, , 2  点差法:设交点坐标为,,代入抛物线方程,得 将两式相减,可得a. 在涉及斜率问题时,b. 在涉及中点轨迹问题时,设线段的中点为,, 即,同理,对于抛物线,若直线与抛物线相交于两点,点是弦的中点,则有(注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,且不等于零)一、抛物线的定义及其应用例1、设P是抛物线y2=4x上的一个动点.(1)求点P到点A(-1,1)的距离与点P到直线x=-1的距离之和的最小值;(2)若B(3,2),求|PB|+|PF|的最小值.例2、(2011山东高考)设M(x0,y0)为抛物线C:x2=8y上一 点,F为抛物线C的焦点,以F为圆心、|FM|为半径的圆和抛物线C的准线相交,则y0的取值范围是(  ) A.(0,2)   B.[0,2] C.(2,+∞) D.[2,+∞)二、抛物线的标准方程和几何性质例3、抛物线y2=2px(p>0)的焦点为F,准线为l,经过F的直线与抛物线交于A、B两点,交准线于C点,点A在x轴上方,AK⊥l,垂足为K,若|BC|=2|BF|,且|AF|=4,则△AKF的面积是 (  )A.4 B.3 C.4 D.8例4、过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点A、B,交其准线l于点C,若|BC|=2|BF|,且|AF|=3则此抛物线的方程为 (   ) A.y2=x   B.y2=9x C.y2=x D.y2=3x三、抛物线的综合问题例5、(2011江西高考)已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x10)上,M点到抛物线C的焦点F的距离为2,直线l:y=-x+b与抛物线C交于A,B两点.(1)求抛物线C的方程;(2)若以AB为直径的圆与x轴相切,求该圆的方程.练习题1.已知抛物线x2=ay的焦点恰好为双曲线y2-x2=2的上焦点,则a等于 (  )A.1     B.4 C.8 D.162.抛物线y=-4x2上的一点M到焦点的距离为1,则点M的纵坐标是 (  )A.- B.- C. D.3.(2011辽宁高考)已知F是拋物线y2=x的焦点,A,B是该拋物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为 (  ) A. B.1 C. D.4.已知抛物线y2=2px,以过焦点的弦为直径的圆与抛物线准线的位置关系是 (  )A.相离 B.相交 C.相切 D.不确定5.(2012宜宾检测)已知F为抛物线y2=8x的焦点,过F且斜率为1的直线交抛物线于A、B两点,则||FA|-|FB||的值等于 (  ) A.4 B.8 C.8 D.166.在y=2x2上有一点P,它到A(1,3)的距离与它到焦点的距离之和最小,则点P的坐标是 (  )A.(-2,1) B.(1,2) C.(2,1) D.(-1,2) 7.(2011陕西高考)设抛物线的顶点在原点,准线方程为x=-2,则抛物线的方程是 (   ) A.y2=-8x B.y2=8x C.y2=-4x D.y2=4x8.(2012永州模拟)以抛物线x2=16y的焦点为圆心,且与抛物线的准线相切的圆的方程为________.9.已知抛物线的顶点在原点,对称轴为y轴,抛物线上一点Q(-3,m)到焦点的距离是5,则抛物线的方程为________.10.已知抛物线y2=4x与直线2x+y-4=0相交于A、B两点,抛物线的焦点为F,那么| | +| | =________.11.过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2, y2)两点,若x1+x2=6,那么 |AB|等于________12.根据下列条件求抛物线的标准方程:(1)抛物线的焦点是双曲线 16x2-9y2=144的左顶点;(2)过点P(2,-4).13.已知点A(-1,0),B(1,-1),抛物线C:y2=4x,O为坐标原点,过点A的动直线l交抛物线C于M,P两点,直线MB交抛物线C于另一点Q.若向量与的夹角为,求△POM的面积.参考答案:一、抛物线的定义及其应用例1、(1)如图,易知抛物线的焦点为F(1,0),准线是x=-1.由抛物线的定义知:点P到直线x=-1的距离等于点P到焦点F的距离.于是,问题转化为:在曲线上求一点P,使点P到点A(-1,1)的距离与点P到F(1,0)的距离之和最小.显然,连结AF交曲线于P点,则所求的最小值为|AF|,即为.(2)如图,自点B作BQ垂直准线于Q,交抛物线于点P1,则|P1Q|=|P1F|.则有|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=4.即|PB|+|PF|的最小值为4.例2、解析:圆心到抛物线准线的距离为p,即p=4,根据已 知只要|FM|>4即可.根据抛物线定|FM|=y0+2由y0+2>4,解得y0>2,故y0的取值范围是(2,+∞).二、抛物线的标准方程和几何性质例3、设点A(x1,y1),其中y1>0.由点B作抛物线的准线的垂线,垂足为B1.则有 |BF|=|BB1|;又|CB|=2|FB|,因此有|CB|=2|BB1|,cos∠CBB1==,∠CBB1=.即直线AB与x轴的夹角为.又|AF|=|AK|=x1+=4,因此y1=4sin=2,因此△AKF的面积等于|AK|y1=42=4.例4.分别过点A、B作AA1、BB1垂直于l,且垂足分别为A1、B1,由已知条件|BC|=2|BF|得|BC|=2|BB1|,∴∠BCB1=30,又|AA1|=|AF|=3,∴|AC|=2|AA1|=6,∴|CF|=|AC|-|AF|=6-3=3,∴F为线段AC的中点.故点F到准线的距离为p=|AA1|=,故抛物线的方程为y2=3x.三、抛物线的综合问题例5、(1)直线AB的方程是y=2(x-),与y2=2px联立,从而有4x2-5px+p2=0,所以:x1+x2=,由抛物线定义得:|AB|=x1+x2+p=9,所以p=4,从而抛物线方程是y2=8x.(2)由p=4,4x2-5px+p2=0可简化为x2-5x+4=0,从而x1=1,x2=4,y1=-2,y2=4,从而A(1,-2),B(4,4);设 =(x3,y3)=(1,-2)+λ(4,4)=(4λ+1,4λ-2).又y=8x3,即[2(2λ-1)]2=8(4λ+1).即(2λ-1)2=4λ+1.解得λ=0,或λ=2.例6、 (1)设动点P的坐标为(x,y),由题意有-|x|=1.化简得y2=2x+2|x|. 当x≥0时,y2=4x;当x<0时,y=0.所以,动点P的轨迹C的方程为y2=4x(x≥0)和y=0(x<0). (2)由题意知,直线l1的斜率存在且不为0,设为k,则l1的方程为y=k(x-1).由,得k2x2-(2k2+4)x+k2=0. (7分)设A(x1,y1),B(x2,y2),则x1,x2是上述方程的两个实根,于是x1+x2=2+,x1x2=1. (8分)因为l1⊥l2,所以l2的斜率为-. 设D(x3,y3),E(x4,y4),则同理可得x3+x4=2+4k2,x3x4=1. =(x1+1)(x2+1)+(x3+1)(x4+1)= x1x2+(x1+x2)+1+x3x4+(x3+x4)+1 (11分)=1+(2+)+1+1+(2+4k2)+1=8+4(k2+)≥8+42=16. 当且仅当k2=,即k=1时, 取最小值16. 例7 、(1)抛物线y2=2px(p>0)的准线为x=-,由抛物线定义和已知条件可知|MF|=1-(-)=1+=2,解得p=2, 故所求抛物线C的方程为y2=4x.(2)。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.