
四川省甘孜市2024届高三4月摸底考试数学试题.doc
19页四川省甘孜市2024届高三4月摸底考试数学试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.设双曲线的一条渐近线为,且一个焦点与抛物线的焦点相同,则此双曲线的方程为( )A. B. C. D.2.已知直线:与椭圆交于、两点,与圆:交于、两点.若存在,使得,则椭圆的离心率的取值范围为( )A. B. C. D.3.已知双曲线的左、右顶点分别是,双曲线的右焦点为,点在过且垂直于轴的直线上,当的外接圆面积达到最小时,点恰好在双曲线上,则该双曲线的方程为( )A. B.C. D.4.已知双曲线的右焦点为,过的直线交双曲线的渐近线于两点,且直线的倾斜角是渐近线倾斜角的2倍,若,则该双曲线的离心率为( )A. B. C. D.5.向量,,且,则( )A. B. C. D.6.已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},则下列结论正确的是( )A.﹣3∈A B.3B C.A∩B=B D.A∪B=B7.已知椭圆:的左、右焦点分别为,,过的直线与轴交于点,线段与交于点.若,则的方程为( )A. B. C. D.8.甲、乙、丙、丁四位同学高考之后计划去三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去社区,乙不去社区,则不同的安排方法种数为 ( )A.8 B.7 C.6 D.59.我国宋代数学家秦九韶(1202-1261)在《数书九章》(1247)一书中提出“三斜求积术”,即:以少广求之,以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积. 其实质是根据三角形的三边长,,求三角形面积,即. 若的面积,,,则等于( )A. B. C.或 D.或10.以下关于的命题,正确的是A.函数在区间上单调递增B.直线需是函数图象的一条对称轴C.点是函数图象的一个对称中心D.将函数图象向左平移需个单位,可得到的图象11.设函数恰有两个极值点,则实数的取值范围是( )A. B.C. D.12.如图,矩形ABCD中,,,E是AD的中点,将沿BE折起至,记二面角的平面角为,直线与平面BCDE所成的角为,与BC所成的角为,有如下两个命题:①对满足题意的任意的的位置,;②对满足题意的任意的的位置,,则( ) A.命题①和命题②都成立 B.命题①和命题②都不成立C.命题①成立,命题②不成立 D.命题①不成立,命题②成立二、填空题:本题共4小题,每小题5分,共20分。
13.设α、β为互不重合的平面,m,n是互不重合的直线,给出下列四个命题:①若m∥n,则m∥α;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③若α∥β,m⊂α,n⊂β,则m∥n;④若α⊥β,α∩β=m,n⊂α,m⊥n,则n⊥β;其中正确命题的序号为_____.14.一次考试后,某班全班50个人数学成绩的平均分为正数,若把当成一个同学的分数,与原来的50个分数一起,算出这51个分数的平均值为,则_________.15.角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点,则的值是 .16.的展开式中,常数项为______;系数最大的项是______.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)已知函数u(x)=xlnx,v(x)x﹣1,m∈R.(1)令m=2,求函数h(x)的单调区间;(2)令f(x)=u(x)﹣v(x),若函数f(x)恰有两个极值点x1,x2,且满足1e(e为自然对数的底数)求x1•x2的最大值.18.(12分)的内角所对的边分别是,且,.(1)求;(2)若边上的中线,求的面积.19.(12分)选修4-5:不等式选讲设函数.(1) 证明:;(2)若不等式的解集非空,求的取值范围.20.(12分)已知椭圆,上、下顶点分别是、,上、下焦点分别是、,焦距为,点在椭圆上.(1)求椭圆的方程;(2)若为椭圆上异于、的动点,过作与轴平行的直线,直线与交于点,直线与直线交于点,判断是否为定值,说明理由.21.(12分)在三棱柱中,四边形是菱形,,,,,点M、N分别是、的中点,且.(1)求证:平面平面;(2)求四棱锥的体积.22.(10分)在正三棱柱ABCA1B1C1中,已知AB=1,AA1=2,E,F,G分别是棱AA1,AC和A1C1的中点,以为正交基底,建立如图所示的空间直角坐标系F-xyz.(1)求异面直线AC与BE所成角的余弦值;(2)求二面角F-BC1-C的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1.C【解题分析】求得抛物线的焦点坐标,可得双曲线方程的渐近线方程为,由题意可得,又,即,解得,,即可得到所求双曲线的方程.【题目详解】解:抛物线的焦点为可得双曲线即为的渐近线方程为由题意可得,即又,即解得,.即双曲线的方程为.故选:C【题目点拨】本题主要考查了求双曲线的方程,属于中档题.2.A【解题分析】由题意可知直线过定点即为圆心,由此得到坐标的关系,再根据点差法得到直线的斜率与坐标的关系,由此化简并求解出离心率的取值范围.【题目详解】设,且线过定点即为的圆心,因为,所以,又因为,所以,所以,所以,所以,所以,所以,所以.故选:A.【题目点拨】本题考查椭圆与圆的综合应用,着重考查了椭圆离心率求解以及点差法的运用,难度一般.通过运用点差法达到“设而不求”的目的,大大简化运算.3.A【解题分析】点的坐标为,,展开利用均值不等式得到最值,将点代入双曲线计算得到答案.【题目详解】不妨设点的坐标为,由于为定值,由正弦定理可知当取得最大值时,的外接圆面积取得最小值,也等价于取得最大值,因为,,所以,当且仅当,即当时,等号成立,此时最大,此时的外接圆面积取最小值,点的坐标为,代入可得,.所以双曲线的方程为.故选:【题目点拨】本题考查了求双曲线方程,意在考查学生的计算能力和应用能力.4.B【解题分析】先求出直线l的方程为y(x﹣c),与y=±x联立,可得A,B的纵坐标,利用,求出a,b的关系,即可求出该双曲线的离心率.【题目详解】双曲线1(a>b>0)的渐近线方程为y=±x,∵直线l的倾斜角是渐近线OA倾斜角的2倍,∴kl,∴直线l的方程为y(x﹣c),与y=±x联立,可得y或y,∵,∴2•,∴ab,∴c=2b,∴e.故选B.【题目点拨】本题考查双曲线的简单性质,考查向量知识,考查学生的计算能力,属于中档题.5.D【解题分析】根据向量平行的坐标运算以及诱导公式,即可得出答案.【题目详解】故选:D【题目点拨】本题主要考查了由向量平行求参数以及诱导公式的应用,属于中档题.6.C【解题分析】试题分析:集合 考点:集合间的关系7.D【解题分析】由题可得,所以,又,所以,得,故可得椭圆的方程.【题目详解】由题可得,所以,又,所以,得,,所以椭圆的方程为.故选:D【题目点拨】本题主要考查了椭圆的定义,椭圆标准方程的求解.8.B【解题分析】根据题意满足条件的安排为:A(甲,乙)B(丙)C(丁);A(甲,乙)B(丁)C(丙);A(甲,丙)B(丁)C(乙); A(甲,丁)B(丙)C(乙); A(甲)B(丙,丁)C(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7种,选B. 9.C【解题分析】将,,,代入,解得,再分类讨论,利用余弦弦定理求,再用平方关系求解.【题目详解】已知,,,代入,得,即 ,解得,当时,由余弦弦定理得: ,.当时,由余弦弦定理得: , .故选:C【题目点拨】本题主要考查余弦定理和平方关系,还考查了对数学史的理解能力,属于基础题.10.D【解题分析】利用辅助角公式化简函数得到,再逐项判断正误得到答案.【题目详解】A选项,函数先增后减,错误B选项,不是函数对称轴,错误C选项,,不是对称中心,错误D选项,图象向左平移需个单位得到,正确故答案选D【题目点拨】本题考查了三角函数的单调性,对称轴,对称中心,平移,意在考查学生对于三角函数性质的综合应用,其中化简三角函数是解题的关键.11.C【解题分析】恰有两个极值点,则恰有两个不同的解,求出可确定是它的一个解,另一个解由方程确定,令通过导数判断函数值域求出方程有一个不是1的解时t应满足的条件.【题目详解】由题意知函数的定义域为,.因为恰有两个极值点,所以恰有两个不同的解,显然是它的一个解,另一个解由方程确定,且这个解不等于1.令,则,所以函数在上单调递增,从而,且.所以,当且时,恰有两个极值点,即实数的取值范围是.故选:C【题目点拨】本题考查利用导数研究函数的单调性与极值,函数与方程的应用,属于中档题.12.A【解题分析】作出二面角的补角、线面角、线线角的补角,由此判断出两个命题的正确性.【题目详解】①如图所示,过作平面,垂足为,连接,作,连接.由图可知,,所以,所以①正确.②由于,所以与所成角,所以,所以②正确.综上所述,①②都正确.故选:A【题目点拨】本题考查了折叠问题、空间角、数形结合方法,考查了推理能力与计算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。
13.④【解题分析】根据直线和平面,平面和平面的位置关系依次判断每个选项得到答案.【题目详解】对于①,当m∥n时,由直线与平面平行的定义和判定定理,不能得出m∥α,①错误;对于②,当m⊂α,n⊂α,且m∥β,n∥β时,由两平面平行的判定定理,不能得出α∥β,②错误;对于③,当α∥β,且m⊂α,n⊂β时,由两平面平行的性质定理,不能得出m∥n,③错误;对于④,当α⊥β,且α∩β=m,n⊂α,m⊥n时,由两平面垂直的性质定理,能够得出n⊥β,④正确;综上知,正确命题的序号是④.故答案为:④.【题目点拨】本题考查了直线和平面,平面和平面的位置关系,意在考查学生的空间想象能力和推断能力.14.1【解题分析】根据均值的定义计算.【题目详解】由题意,∴.故答案为:1.【题目点拨】本题考查均值的概念,属于基础题.15.【解题分析】试题分析:由三角函数定义知,又由诱导公式知,所以答案应填:.考点:1、三角函数定义;2、诱导公式.16. 【解题分析】求出二项展开式的通项,令指数为零,求出参数的值,代入可得出展开式中的常数项;求出项的系数,利用作商法可求出系数最大的项.【题目详解】的展开式的通项为,令,得,。
