
2023年人教版高中数学必修选修知识点.doc
13页必 修 2知识点第一章 空间几何体1.1柱、锥、台、球的结构特性1.2空间几何体的三视图和直观图1 画三视图的原则: 长对齐、高对齐、宽相等2直观图:斜二测画法. 环节:(1).平行于坐标轴的线仍然平行于坐标轴;(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变; (3).画法要写好1.3 空间几何体的表面积与体积(一 )空间几何体的表面积1 棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积 3 圆锥的表面积4 圆台的表面积 5 球的表面积(二)空间几何体的体积1柱体的体积 2锥体的体积 3台体的体积 4球体的体积 第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系(1)公理1:假如一条直线上的两点在一个平面内,那么这条直线在此平面内.符号表达为LA·α A∈LB∈L => L αA∈αC·B·A·αB∈α公理1作用:判断直线是否在平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表达为:A、B、C三点不共线 => 有且只有一个平面α,使A∈α、B∈α、C∈α公理2作用:拟定一个平面的依据P·αLβ(3)公理3:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 符号表达为:P∈α∩β =>α∩β=L,且P∈L公理3作用:鉴定两个平面是否相交的依据.2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:共面直线 相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点2 公理4:平行于同一条直线的两条直线互相平行公理4作用:判断空间两条直线平行的依据3 等角定理:空间中假如两个角的两边分别相应平行,那么这两个角相等或互补.4 注意点:① a'与b'所成的角的大小只由a、b的互相位置来拟定,与O的选择无关,为了简便,点O一般取在两直线中的一条上;② 两条异面直线所成的角θ∈(0, ];③ 当两条异面直线所成的角是直角时,就说这两条异面直线互相垂直,记作a⊥b;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内 —— 有无数个公共点 (2)直线与平面相交 —— 有且只有一个公共点 (3)直线在平面平行 —— 没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表达a α a∩α=A a∥α2.2.1 直线与平面平行的鉴定1、直线与平面平行的鉴定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行 简记为:线线平行,则线面平行符号表达: a αb α => a∥αa∥b2.2.2 平面与平面平行的鉴定1、两个平面平行的鉴定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行符号表达:a βb βa∩b = P β∥αa∥αb∥α2、判断两平面平行的方法有三种:(1)用定义;(2)鉴定定理;(3)垂直于同一条直线的两个平面平行2.2.3 — 2.2.4直线与平面、平面与平面平行的性质1、直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
简记为:线面平行则线线平行符号表达:a ∥α a β a∥b α∩β= b2、两个平面平行的性质定理:假如两个平行的平面同时与第三个平面相交,那么它们的交线平行 符号表达:α∥β α∩γ= a a∥b β∩γ= b2.3.1直线与平面垂直的鉴定1、定义:直线L与平面α内的任意一条直线垂直,就说直线L与平面α垂直,记作L⊥α. 2、线面垂直鉴定定理:一条直线与平面内的两条相交直线都垂直,则该直线与此平面垂直2.3.2平面与平面垂直的鉴定1、二面角的概念:表达从空间一直线出发的两个半平面所组成的图形A 梭 l βB α2、两个平面互相垂直的鉴定定理:一个平面过另一个平面的垂线,则这两个平面垂直2.3.3 — 2.3.4直线与平面、平面与平面垂直的性质1、直线与平面垂直的性质定理:垂直于同一个平面的两条直线平行2、两个平面垂直的性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
说明:1.证线面平行、面面平行关键是证明线线平行,证明线线平行常用方法有:三角形中位线定理、平行四边形的性质定理、梯形中位线定理、平行线分线段成比例定理的推论 直线与直线平行直线与平面平行平面与平面平2.证明线面垂直、面面垂直的关键是证明线线垂直,证明线线垂直常用的方法有:等腰三角形三线合一的性质、勾股定理的逆定理等. 直线与直线垂直直线与平面垂直平面与平面垂直第三章 直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率当直线l与x轴平行或重合时, α=0°, k = tan0°=0;当直线l与x轴垂直时, α= 90°, k 不存在.注意: 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.当时,; 当时,; 当时,不存在②过两点P1 (x1,y1), P2 (x2,y2),x1≠x2的直线斜率公式: 注意:当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(3)直线方程①点斜式:直线斜率k,且过点②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:,其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。
(其中)⑤一般式:(A,B不全为0)注意:各式的合用范围 特殊的方程如:倾斜角0°,k=0,此时为平行于x轴的直线:(b为常数); 倾斜角 90°时,直线的斜率不存在,它的方程不能用点斜式表达. 此时为平行于y轴的直线:(a为常数); (4)两直线平行与垂直 :当,时,; 斜率互为负倒数注意:运用斜率判断直线的平行与垂直时,要注意斜率的存在与否5)两条直线的交点 相交交点坐标即方程组的一组解方程组无解 ; 方程组有无数解与重合(6)两点间距离公式:设,则 (7)点到直线距离公式:点到直线的距离(8)两平行直线距离公式两平行线为:,:,则与的距离注意点:x,y相应项系数应相等9)平行直线与垂直直线设法:1、圆定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆半径2、圆的方程(1)标准方程,圆心,半径为r;特殊地,当时,圆心在原点的圆的方程为:点与圆的位置关系如何判断?(2)一般方程当时,方程表达圆,此时圆心为,半径为当时,表达一个点; 当时,方程不表达任何图形3)求圆方程的方法:一般都采用待定系数法:先设后求需三个独立条件,若用圆的标准方程,需求出a,b,r;若用一般方程,需规定出D,E,F;此外要注意多运用圆的几何性质:如弦的中垂线必通过圆心,以此来拟定圆心的位置。
3、直线与圆的位置关系(用圆心到直线的距离来判断): 直线,圆,圆心到l的距离 ,; ; 还可运用直线方程与圆的方程联立方程组求解,通过解的个数来判断注:(1)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到直线距离=半径,求k,得方程(2)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来拟定设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来拟定当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,公切线三条;当时两圆相交,连心线垂直平分公共弦,有两条公切线;当时,两圆内切,连心线通过切点,只有一条公切线;当时,两圆内含,无公切线;当时,为同心圆判断两个圆的位置关系也可以通过联立方程组判断公共解的个数来解决注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线; 圆的辅助线一般为连圆心与切线或者连圆心与弦中点。
5、中点坐标公式 6、两圆相交则连心线垂直平分相交弦 7、线圆相交,计算弦长,常用勾股定理:弦长一半、半径、弦心距8、光线反射问题:入射点的“像”在反射光线的反向延长线上,反射点的“像”在入反射光线的反向延长线上4.3.1空间直角坐标系1、点M相应有序实数组,、、分别是P、Q、R在、、轴上的坐标2、有序实数组,相应着空间直角坐标系中的一点3、空间中任意点M的坐标都可以用有序实数组来表达,该数组叫做点M在此空间直角坐标系中的坐标,记M,叫做点M的横坐标,叫做点M的纵坐标,叫做点M的竖坐标4.3.2空间两点间的距离公式1、空间中任意一点到点之间的距离公式选修2-1第一章:命题与逻辑结构1、2.真假性之间的关系:两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.3、若,则是的充足条件,是的必要条件.若,则是的充要条件(充足必要条件).4、(1)当、都是真命题时,是真命题;有一个是假命题时,是假命题.(2)当、有一个是真命题时,是真命题;两个都是假命题时,是假命题.(3)对一个命题全盘否认,得到一个新命题,记作.若是真命题,则必是假命题;若是假命题,则必是真命题.5、(1)全称命题“对中任意一个,有成立”,记作“,”.全称命题:,,它的否认:,。
是特称命题2)特称命题“存在中的一个,使成立”,记作“,”.特称命题:,,它的否认:,是全称命题第二章:圆锥曲线1、求曲线的方程(点的轨迹方程)的环节:建、设、限、代、化①建立适当的直角坐标系;②设动点及其他的点;③找出满足限制条件的等式;④将点的坐标代入等式;⑤化简方程,并验证(查漏除杂)2、平面内与两个定点,的距离之和等于常数(大于)的点的轨迹称为椭圆3、椭圆的几何性质:。












