
数理统计课后习题答案答案(汪荣鑫版本).ppt
95页Page 1 第一章第一章 抽样和抽样分布抽样和抽样分布 1.1.子样平均数和子样方差的简化计算如下:子样平均数和子样方差的简化计算如下:设子样值设子样值x1,x2,…,xn的平均数的平均数 为和方差为为和方差为作变换作变换 ,得到,得到y1,y2,…,yn,它的平均它的平均数为数为 和方差为和方差为 试证: 解:由变换解:由变换 ,即,即 Page 212. 在在五五块块条条件件基基本本相相同同的的田田地地上上种种植植某某种种农农作作物物,,亩亩产产量量分分别别为为92,,94,,103,,105,,106((单单位位::斤斤)),,求求子子样样平平均均数数和和子子样样方方差解:作变换解:作变换 Page 33.3.设设X1,X2,…,Xn是参数为的泊松分布的母体是参数为的泊松分布的母体的一个子样,是子样平均数,试求的一个子样,是子样平均数,试求E 和和D 解:解: 4.4.设设X1,X2,…,Xn是区间(是区间(-1,,1)上均匀分)上均匀分布的母体的一个子样,试求子样平均数的布的母体的一个子样,试求子样平均数的均值和方差。
均值和方差解:解: Page 45.5.设设X1,X2,…,Xn是分布为的正态母体的一个是分布为的正态母体的一个子样,求子样,求 的概率分布的概率分布解:解: 由 分布定义 ,Y服从自由度为n的 分布 Page 516.设设母母体体X具具有有正正态态分分布布N(0,1),,从从此此母母体体中中取取一一容容量量为为6的的子子样样((x1,x2,x3,x4,x5,x6))又又设设 试试决决定定常常数数C,使使得随机变量得随机变量CY服从服从 分布解:解:亦服从N(0,3)且与Z1相互独立, 且与 相互独立由 分布可加性, Page 67.7.已知已知 ,求证,求证证明:令证明:令 Page 78设母体 ,从中抽取容量n的样本 求(1)n=36时, 解: (2)n=64时,求 解:Page 8第二章第二章 参数估计参数估计1.1.设母体设母体X具有负指数分布,它的分布密度具有负指数分布,它的分布密度为为 f(x)= 其中其中 。
试用矩法求的估计量试用矩法求的估计量解:解: f(x)= (( ))用样本 估计Ex,则有 ^Page 912.设母体设母体X具有几何分布具有几何分布,它的分布列为它的分布列为P{X=k}=(1-p)k-1p,k=1,2,… 先先用用矩矩法法求求p的的估估计计量量,再再求求p的的最最大大似似然然估估计计.解解 :( 1)矩法估计矩法估计^Page 10(2)极大似然估计极大似然估计^Page 1113.设设母母体体X具具有有在在区区间间[a,b]上上的的均均匀匀分分布布,其分布密度为其分布密度为 f(x)= 其其中中a,b是是未未知知参参数数,试试用用矩矩法法求求a与与b的的估估计计量量.解解:用用 和和 分别估计分别估计EX和和DX得得 ^^Page 1214.设母体设母体X的分布密度为的分布密度为 f(x)= 其中其中 (1) 求求 的最大似然估计量的最大似然估计量; (2) (2)用矩法求用矩法求 的估计量的估计量. 解解: ( )1最大似然估计最大似然估计 ^Page 132矩法估计用 估计EX Page 145.设母体X的密度为试求 的最大似然估计;并问所得估计量是否的无偏估计.解:得 ^Page 15 是 的无偏估计.^Page 166.设母体X具有分布密度 f(x)= 其中k是已知的正整数,试求未知参数的最大似然估计量. 解:似然函数 ^^Page 177.设母体X具有均匀分布密度 ,从中抽得容量为6的子样数值 1.3,0.6,1.7,2.2,0.3,1.1,试求母体平均数和方差的最大似然估计量的值. 解: , 的最大似然估计 ^^^^^Page 188.设母体X的分布密度为 f(x)=试求 的最大似然估计。
解:似然函数为了使L达到最大, ,尽可能小,尽可能大,而^Page 1912设母体X服从正态分布 是从此母体中抽取的一个子样试验证下面三个估计量(1)^(2)^(3)^都是 的无偏估计,并求出每个估计量的方差问哪一个方差最小?解:同理: 都是 的无偏估计^^^Page 20^^^方差最小为有效^对形如^Page 2113.设X1,X2,…,Xn是具有泊松分布 母体的一个子样试验证:子样方差 是 的无偏估计;并且对任一值也是 的无偏估计,此处 为子样的平均数解:Page 2214 .设X1,X2,…,Xn为母体 的一个子样试选择适当常数C,使 为 的无偏估计解:Page 2318.从一批电子管中抽取100只,若抽取的电子管的平均寿命为1000小时,标准差s为40小时,试求整批电子管的平均寿命的置信区间(给定置信概率为95%).解:n=100, 小时,s=40小时用 估计 ,构造函数给定置信概率 ,有即整批电子管的平均寿命置信概率为95%的置信区间为(992.2,1007.8)小时.Page 2419.随机地从一批钉子中抽取16枚,测得其长度(单位:cm)为2.14,2.10,2.13,2.15,2.13,2.12,2.13,2.10,2.15,2.12,2.14,2.10,2.13,2.11,2.14,2.11。
设钉长分布为正态的,试求母体平均数 的置信概率为90%的置信区间 :(1)若已知(2)若 未知解:n=16,(1)若已知 ,构造函数给定置信概率90%,有即Page 25(2)若 未知构造函数给定置信概率90%,查得 ,有∴母体平均数 的置信概率为90%的置信区间为 ,即(2.125±0.0075)Page 2621.假定每次试验时,出现事件A的概率p相同但未知如果在60次独立试验中,事件A出现15次,试求概率p的置信区间(给定置信概率为0.95)解:n=60,m=15,x~“0-1”分布,构造函数给定置信概率95%,有即故p的置信概率为95%的置信区间为(0.25±0.11)Page 2722.对于方差 为已知的正态母体,问需抽取容量n为多大的子样,才使母体平均数 的置信概率为 的置信区间的长度不大于L?解:构造函数给定置信概率 ,有 ,使即置信区间长度 Page 2823.从正态母体中抽取一个容量为n的子样,算得子样标准差 的数值。
设(1)n=10, =5.1(2)n=46, =14试求母体标准差的置信概率为0.99的置信区间解:(1)n=10,用 估计 ,构造函数 给定置信概率 =99%,查表得使母体 的置信概率为0.99的置信区间是即(3.150,11.62)Page 29(2)n=46, 时,所求的置信区间是即(10.979,19.047)Page 3025.设母体X服从正态分布 , 和 是子样X1,X2,…,Xn的平均数和方差; 又设 ,且与X1,X2,…,Xn独立,试求统计量 的抽样分布.解:,又 服从正态分布,故 , 又与独立Page 31根据t分布定义Page 3226.设X1,X2,…,Xm和Y1,Y2,…,Yn分别是从分布为 两个母体中抽取的独立随机子样, 分别表示X和Y的子样平均数, 和 分别表示X和Y的子样方差.对任意两个固定实数 和 ,试求随机变量的概率分布.Page 33解: 是正态变量线性组合,仍服从正态分布.又且相互独立由 分布可加性 ,且与独立根据t分布定义Page 3427.从正态母体中抽取一个n>45的大子样,利用第一章2.2中 分布的性质3,证明方差的置信区间(给定置信概率为 )是Page 35证明:对正态母体 的置信概率为 的置信区间是当n>45时,(1)代入(1)式,即证毕.Page 3629.随机地从A批导线中抽取4根,从B批导线中抽取5根,测得其电阻(单位:欧姆)并计算得:设测试数据分别具有分布和.试求 的置信概率为95%的置信区间.Page 37解:,构造函数给定置信概率95%,查得 ,使所求置信下限为:置信上限为:0.0033+0.00406=0.00736 (-0.00076,0.00736)为 的置信概率为95%的置信区间.Page 3831.两台机床加工同一种零件,分别抽取6个和9个零件,测得其长度计算得假定各台机床零件长度服从正态分布.试求两个母体方差之比 的置信区间(给定置信概率为95%).解:构造函数给定置信概率 ,有查表所求置信区间的置信下限为置信上限为Page 3934.从一批某种型号电子管中抽出容量为10的子样,计算得标准差 (小时).设整批电子管服从正态分布.试给出这批管子寿命标准差 的单侧置信上限(置信概率为95%).解:n=10, (小时)构造函数给定置信概率95%,查,使即故所求 的置信概率为95%的置信上限为第三章第三章 假设检验假设检验Page 411.从已知标准差 的正态母体中,抽取容量为n=16的子样,由它算得子样平均数 .试在显著水平0.05下,检验假设H0:解:1.建立原假设H0: 2.在H0成立前提下,构造统计量3.给定显著水平 ,有 ,使即4.由样本n=16,代入接受H0Page 422.从正态母体 中取100个样品,计算得(1)试检验H0:(2)计算上述检验在 时犯第二类错误的概率.是否成立解 : (1)1.建立原假设H0: 2.在H0成立前提下,构造统计量3.给定显著水平 ,有 ,使即代入拒绝H0Page 43(2)真实 时,Page 443.某批砂矿的5个样品中的镍含量经测定为 x(%) 3.25 3.27 3.24 3.26 3.24设测定值服从正态分布。
问在下 能否接受假设:这批矿砂的(平均)镍含量为3.25解:设 , 未知,计算 =3.252, =0.0131)建立假设 :(2)在假设成立的前提下,构造统计量 Page 45(3)给定 ,查得 =4.6041(4)由样本计算, = =0.34 < 接受Page 464.某电器零件的平均电阻一直保持在2.64欧姆改变加工工艺后,测得100个零件的平均电阻为2.62欧姆,电阻标准差(s)为0.06欧姆,问新工艺对此零件的电阻有无显著影响 ?解:(1)建立假设 : n=100, ,s=0.06(2)在 成立前提下,构造统计量 Page 47(3)给定 ,有 ,使 (4)由样本计算: 拒绝 ,有显著影响。
Page 485某纺织厂在正常的运转条件下,各台布机一小时内经纱平均断头数为0.973根,断头数的标准差为0.162根该厂进行工艺改革,减少轻纱上桨率在200台布机上试验,结果每台一小时内经纱平均断头数为0.994根,标准差(s)为0.16根,问新工艺经纱断头数与旧工艺有无显著差异( )?解:(1)建立假设 : n=100, ,s=0.06 (2)在 成立的前提下,构造统计量Page 49(3)给定 ,查得 ,使(4)由样本计算, 接受Page 506.某产品的次品率为0.17现对此产品进行新工艺试验,从中抽取400件检验,发现有次品56件能否认为这项新工艺显著地影响产品的质量( )?解:(1)建立假设 :(2)在 成立的前提下,构造统计量Page 51(3)给定 ,查的 , 使得(4)由样本计算, 接受Page 527.某切割机正常工作时,切割每段金属棒的平均长度为10.5cm。
今在某段时间内随机的抽取15段进行测量,某结果如下(cm):10.4,10.6,10.1,10.4,10.5,10.3,10.3,10.2,10.9,10.6,10.8,10.5,10.7,10.2,10.7问此段时间内该机工作是否正常( )?假定金属棒长度服从正态分布解: (1)建立假设 : n=15, , Page 53(2)在 成立的前提下,构造统计量(3)给定 ,查得 ,使(4)由样本计算, 接受 ,工作正常Page 548.从某种实验物中取出24个样品,测量其发热量,计算得 ,子样标准差 ,问以5%的显著水平是否可认为发热量的期望值是12100(假定发热量服从正态分布)?解:(1)建立假设 : n=24, , (2)在 成立的前提下,构造统计量(3)给定 ,查得 Page 55(4)由样本计算, 拒绝 8.有一种新安眠药,据说在一定剂量下,能比某种安眠药平均增加睡眠时间3小时。
根据质料用旧安眠药睡眠时间平均为20.8小时,标准差为1.6小时为了检验这个说法是否正确,收集到一组使用新安眠药的睡眠时间为 26.7,22.0,24.1,21.0,27.2,25.0, 23.4Page 56试问:从这组数据能否说明新安眠药的睡眠时间已达到新的疗效(假定睡眠时间服从正态分布,取 )?解:1、(1)建立假设 :(2)在 成立的前提下,构造统计量(3)给定 ,查得 Page 57(4)由样本计算, 接受 2、(1)建立假设 : (2)在 成立的前提下,构造统计量(3)给定 ,查得 (4)由样本计算, 接受 ,认为达到效果Page 5810.为了比较两种枪弹的速度(单位:米/秒),在相同的条件下进行速度测定算得子样平均数和子样标准差 枪弹甲 枪弹乙在显著水平 下,这两种枪弹(平均)速度有无显著差异?解: (1)建立假设 :(2)在 成立的前提下,构造统计量Page 59(3)给定 ,查得(4)由样本计算 拒绝 ,有显著差异。
Page 6011.在十块田地上同时试种甲、乙两种品种作物,根据产量计算得 , , 试问这两种品种产量有无明显差异( )?假定两种品种作物产量分别服从正态分布,且方差相等解: 1、(1)建立假设 :(2)在 成立的前提下,构造统计量Page 61Page 62Page 6312.为确定肥料的效果,取1000株植物做试验在没有施肥的100株植物中,有53株长势良好;在已施肥的900株中,则有783株长势良好问施肥的效果是否显著( )?解:(1)建立假设(2)在 成立的前提下,构造统计量Page 64Page 65Page 66Page 67Page 6822.测得两批电子器材的电阻的子样值为A批 x(欧姆):0.140,0.138,0.143,0.142,0.144,0.137B批 y(欧姆):0.135,0.140,0.142,0.136,0.138,0.140设这两批器材的电阻分别服从分布 与Page 69Page 70Page 71Page 72Page 7316.检验一颗筛子的六个面是否匀称现在掷120,结果如下:点数 1, 2, 3, 4, 5, 6频数 21, 28, 19, 24, 16, 12Page 74Page 7526.有一正四面体,将此四面体分别途为红、黄、蓝、白四色。
现在任意的抛掷它直到它与地面相接触为止记录其抛掷的次数,作为一盘试验做200盘这样的试验,结果如下:抛掷次数 1, 2, 3, 4, 5频数 56, 48, 32, 28, 36问该四面体是否均匀 ?Page 76解:母体X的分布律为:建立假设 :母体X的分布律为上述分布律在 成立的前提下,构造统计量给定显著水平 ,查得Page 77Page 78Page 79方差分析习题方差分析习题1.为了对一元方差分析表作简化计算,对测定值 作变换 ,其中b、c是常数,且 试用 表示组内离差和组间离差,并用他们表示F的值Page 80解: 由第一章习题3可知 组内离差 组间离差 Page 812.有四个厂生产1.5伏的3号电池。
现从每个工厂产品中各取一子样,测量其寿命得到数值如下:问四个厂干电池寿命有无显著差异( )?Page 82解:1.建立假设 : 四个水平下母体 2.在 成立前提下构造统计量 3.给定显著水平 ,查 ,使 4.有样本计算列出方差分析表 F<1,接受 ,四个厂的干电池寿命无显著差异Page 833.抽查某地区三所小学五年级男学生的身高,得如下数据:试问该地区三所小学五年级男学生的平均身高是否有显著差异( )?Page 84解: ,I=1,2,3 1.建立假设 : 2.在 成立前提下构造统计量 3.给定显著水平 ,查 ,使 4.有样本计算列出方差分析表 , 所以拒绝 ,认为三所小学五年级男生平均身高有显著差异Page 854.在一元方差分析中, ,而 ,试求 的无偏估计量及其方差。
Page 86解:在第i水平下 , 估计量为 而总的平均 的估计量为 的估计量为 是无偏的 Page 871.通过原点的一元回归的线形模型为 其中各 相互独立,并且都服从正态分布 试由n组观察值 ,用最小二乘法估计 ,并用矩法估计回归分析习题回归分析习题Page 88解 : ; 的矩法估计 Page 892.在考察硝酸钠的可溶性程度时,对一系列不同温度观察它在100ml的水中溶解的硝酸钠的重量,获得观察结果如下: 从经验和理论知之间有下述关系式 其中各 相互独立,并且都服从正态分布 。
使用最小二乘法估计参数,并且用矩法估计 Page 90解:列表计算Page 91矩法估计Page 923.某医院用光电比色计检验尿汞时,得尿汞含量(mg/L)与光系数读数的结果如下: 已知他们之间有关系式其中 ,且各 相互独立,试求 的最小二乘法估计,并在显著水平0.05下检验是否为38Page 93解:1.列表计算Page 94Page 952.建立假设 :在 成立前提下构造统计量,给定显著水平 ,查 ,使计算|T|=0.846〈接受 ,。












