
湖南省湘潭市湘乡新湘路学区新湘中学高三数学文模拟试题含解析.docx
7页湖南省湘潭市湘乡新湘路学区新湘中学高三数学文模拟试题含解析一、 选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知一元二次不等式的解集为,则的解集为( )A. B. C. D. 参考答案:D :因为一元二次不等式的解集为,所以不等式f(x) >0的解集为 ,则由得 ,解得x<﹣lg2,所以选D.2. 一动圆圆心在抛物线上,且动圆恒与直线相切,则动圆必过定点 A. B. C. D. 参考答案:B略3. (5分)已知O为坐标原点,点A(x,y)与点B关于x轴对称,,则满足不等式的点A的集合用阴影表示( ) A. B. C. D. 参考答案:C【考点】: 向量在几何中的应用.【专题】: 计算题;压轴题;转化思想.【分析】: 先求出点B的坐标,并用点A的坐标表示出+,最后把原不等式转化为x2+(y﹣1)2≤1,找出点所在的位置即可求出结论.解:由题得:B(﹣x,y),=(0,2y).∴+=x2+y2+2y=x2+(y﹣1)2﹣1.∴不等式转化为x2+(y﹣1)2≤1.故满足要求的点在以(o,1)为圆心,1为半径的圆上以及圆的内部.故选C.【点评】: 本题主要考查向量的基本运算以及计算能力和转化思想的应用,属于基础题.4. 已知某地春天下雨的概率为40%.现采用随机模拟的方法估计未来三天恰有一天下雨的概率;先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示下雨,5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表未来三天是否下雨的结果.经随机模拟产生了如下20组随机数:907,966,191,925,271,932,812,458,569,683,431,257,393,027,556,488,730,113,537,989.据此估计,该地未来三天恰有一天下雨的概率为( )A.0.2 B.0.25 C.0.4 D.0.35参考答案:C根据题意,表示未来三天是否下雨的结果,当未来三天恰有一天下雨,就是三个数字中只有一个数字在集合,考查这组数据,以下个数据符合题意,按次序分别为,其概率,故选C. 5. 为了得到函数的图象,可以把函数的图象A.向左平移3个单位长度 B.向右平移3个单位长度C.向左平移1个单位长度 D.向右平移1个单位长度参考答案:D6. 函数的图象如图所示,下列结论正确的是( )A.B.C.D.参考答案:A7. 将函数的图象向左平移个单位长度,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,若对任意的均有成立,则m的最小值为( )A. B. C. D. 参考答案:D【分析】直接应用正弦函数的平移变换和伸缩变换的规律性质,求出函数的解析式,对任意的均有,说明函数在时,取得最大值,得出的表达式,结合已知选出正确答案.【详解】因为函数的图象向左平移个单位长度,所以得到函数,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,所以,对任意的均有成立,所以在时,取得最大值,所以有而,所以的最小值为.【点睛】本题考查了正弦型函数的图象变换规律、函数图象的性质,考查了函数最大值的概念,正确求出变换后的函数解析式是解题的关键.8. 已知命题:,则是( )A. B. C. D.参考答案:A略9. 设奇函数在上是增函数,且,若函数对所有的都成立,则当时t的取值范围是 A. B. C. D.参考答案:C略10. 要得到函数的图象,可以将函数的图象( )A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位参考答案:B略二、 填空题:本大题共7小题,每小题4分,共28分11. 如图,函数f(x)的图像是折线段ABC,其中A,B,C的坐标分别为(0,4),(2,0),(6,4),则f(f(0))=_____;=_____.(用数字作答)参考答案:2 , -2 12. 二项式的展开式中常数项为 ▲ (用数字作答).参考答案:-10【知识点】二项式定理J3,,得r=3, 常数项为-10【思路点拨】先写出通项在求出常数项。
13. 已知,则的最小值为 .参考答案:4 由题意可得:,当且仅当a=1时等号成立.综上可得: 的最小值为4.14. 根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80 mg/100ml(不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100ml(含80)以上时,属醉酒驾车.据《法制晚报》报道,2012年2月1日至3月1日,全国查处酒后驾车和醉酒驾车共28800人,如下图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为 .参考答案:4320人15. 已知等比数列是递增数列,是的前项和.若是方程的两个根,则 _______ .参考答案:364略16. 已知函数 ,则满足方程的所有的的值为 ;参考答案:略17. 某几何体的三视图如图所示(单位:cm),则该几何体的体积是 (单位:cm3),表面积是 (单位:cm2)参考答案:,8++【考点】棱柱、棱锥、棱台的体积;由三视图求面积、体积.【分析】由已知中的三视图可得:该几何体是一个以俯视图为底面的四棱锥,代入棱锥体积公式和表面积公式,可得答案.【解答】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的四棱锥,其直观图如下图所示:底面ABCD的面积为:2×2=4cm2,高VO=cm,故该几何体的体积V=cm3,侧面VAD的面积为:×2×=cm2,VA=VD=2cm,OB=OC=cm,VB=VC=2cm,侧面VAB和侧面BCD的面积为:×2×2=2cm2,侧面VBC底面上的高为cm,故侧面VBC的面积为:×2×=cm2,故几何体的表面积S=4++2×2+=8++cm2,故答案为:,8++三、 解答题:本大题共5小题,共72分。
解答应写出文字说明,证明过程或演算步骤18. 动圆C与定圆内切,与定圆外切点A (Ⅰ) 求动圆C的圆心C的轨迹方程; ks5u(Ⅱ) 若圆心C的轨迹上的两点P、Q满足,求的值参考答案:(Ⅰ) 解: 动圆C的半径为r (r >0)则…………(3分)由椭圆定义知C点在以为焦点的椭圆上,且.………(5分)故所求轨迹方程为 …………6分(Ⅱ) 设P(x1, y1), Q(x2, y2), 则由得…………………(7分)∵P、Q在椭圆上,∴.…………………(9分)得…………………(10分)故 x1=x2 =0, y1 =-3, …………(11分)所以…………………(12分)19. (本小题满分12分) 已知椭圆的焦点在轴上,离心率为,对称轴为坐标轴,且经过点.(I)求椭圆的方程;(II)直线与椭圆相交于、两点, 为原点,在、上分别存在异于点的点、,使得在以为直径的圆外,求直线斜率的取值范围.参考答案:(I)依题意,可设椭圆的方程为. 由 ∵ 椭圆经过点,则,解得∴ 椭圆的方程为······························································································ (II)联立方程组,消去整理得························· ∵ 直线与椭圆有两个交点,∴ ,解得 ①························································· ∵ 原点在以为直径的圆外,∴为锐角,即. 而、分别在、上且异于点,即··············································· 设两点坐标分别为,则 解得 , ②·································································· 综合①②可知:································································· 20. 已知数列{an}满足.(1)证明数列是等比数列,并求数列{an}的通项公式;(2)数列{bn}满足,Tn为数列的前n项和,求证:.参考答案:解:(1)由,得,所以,所以数列是等比了,首项为,公比为,所以,所以.(2)由(1)可得,所以,所以,所以. 21. (14分)已知二次函数同时满足:①不等式的解集有且只有一个元素;②在定义域内存在,使得不等式成立。
设数列的前n项和 (1)求函数的表达式; (2)求数列的通项公式; (3)设各项均不为零的数列中,所有满足的整数I的个数称为这个数列的变号数令(n为正整数),求数列的变号数参考答案:解析:(1)的解集有且只有一个元素,当a=4时,函数上递减故存在,使得不等式成立当a=0时,函数上递增故不存在,使得不等式成立综上,得a=4,…………………………5分(2)由(1)可知当n=1时,当时,…………………………10分(3)由题设,递增,即时,有且只有1个变号数;又∴此处变号数有2个综上得数列的变号数为3………………14分22. 在△ABC中,角A,B,C的对边分别是a,b,c,已知cos2A=﹣,c=,sinA=sinC.(Ⅰ)求a的值;(Ⅱ) 若角A为锐角,求b的值及△ABC的面积.参考答案:【考点】HP:正弦定理;HR:余弦定理.【分析】(Ⅰ)根据题意和正弦定理求出a的值;(Ⅱ)由二倍角的余弦公式变形求出sin2A,由A的范围和平方关系求出cosA,由余弦定理列出方程求出b的值,代入三角形的面积公式求出△ABC的面积.【解答】解:(Ⅰ)在△ABC中,因为,由正弦定理,得.…(6分)(Ⅱ) 由得,,由得,,则,由余弦定理a2=b2+c2﹣2bccosA,化简得,b2﹣2b﹣15=0,解得b=5或b=﹣3(舍负).所以. …(13分)【点评】本题考查正弦定理和余弦定理的综合应用,以及方程思想,考查化简、计算能力,属于中档题.。
