
2023数学中考重点考点归纳.docx
5页2023数学中考重点考点归纳 数学中考重点考点归纳 一、平面直角坐标系 1.各象限内点的坐标的特点 2.坐标轴上点的坐标的特点 3.关于坐标轴、原点对称的点的坐标的特点 4.坐标平面内点与有序实数对的对应关系 二、函数 1.表示方法:⑴解析法;⑵列表法;⑶图象法 2.确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有 意义 3.画函数图象:⑴列表;⑵描点;⑶连线 三、几种特殊函数 (定义→图象→性质) 1. 正比例函数 ⑴定义:y=kx(k≠0) 或y/x=k ⑵图象:直线(过原点) ⑶性质:①k 0,…②k 0,… 2. 一次函数 ⑴定义:y=kx+b(k≠0) ⑵图象:直线过点(0,b)—与y轴的交点和(-b/k,0)—与x轴的交点 ⑶性质:①k 0,…②k 0,… ⑷图象的四种情况: 3. 二次函数 ⑴定义: 特殊地, 都是二次函数 ⑵图象:抛物线(用描点法画出:先确定顶点、对称轴、开口方向,再对称地描点) 用配方法变为 ,则顶点为(h,k);对称轴为直线x=h;a 0时,开口向上;a 0时,开口向下。
⑶性质:a 0时,在对称轴左侧…,右侧…;a 0时,在对称轴左侧…,右侧… 4.反比例函数 ⑴定义: 或xy=k(k≠0) ⑵图象:双曲线(两支)—用描点法画出 ⑶性质:①k 0时,图象位于…,y随x…;②k 0时,图象位于…,y随x…;③两支曲线无限接近于坐标轴但永远不能到达坐标轴 四、重要解题方法 1. 用待定系数法求解析式(列方程[组]求解)对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标如下图: 2.利用图象一次(正比例)函数、反比例函数、二次函数中的k、b;a、b、c的符号 数学中考考点归纳 考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小 考核要求: (1)理解相似形的概念; (2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小 考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理 考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算 注意:被判定平行的一边不可以作为条件中的对应线段成比例使用 考点3:相似三角形的概念 考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点4:相似三角形的判定和性质及其应用 考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用 考点5:三角形的重心 考核要求:知道重心的定义并初步应用 考点6:向量的有关概念 考点7:向量的加法、减法、实数与向量相乘、向量的线性运算 数学中考考点 一、圆的基本性质 1.圆的定义(两种) 2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆 3.“三点定圆”定理 4.垂径定理及其推论 5.“等对等”定理及其推论 5. 与圆有关的角:⑴圆心角定义(等对等定理) ⑵圆周角定义(圆周角定理,与圆心角的关系) ⑶弦切角定义(弦切角定理) 二、直线和圆的位置关系 1.三种位置及判定与性质: 2.切线的性质(重点) 3.切线的判定定理(重点)圆的切线的判定有⑴…⑵… 4.切线长定理 三、圆换圆的位置关系 1.五种位置关系及判定与性质:(重点:相切) 2.相切(交)两圆连心线的性质定理 3.两圆的公切线:⑴定义⑵性质 四、与圆有关的比例线段 1.相交弦定理 2.切割线定理 五、与和正多边形 1.圆的内接、外切多边形(三角形、四边形) 2.三角形的外接圆、内切圆及性质 3.圆的外切四边形、内接四边形的性质 4.正多边形及计算 中心角: 内角的一半: (右图) (解Rt△OAM可求出相关元素, 、 等) 六、 一组计算公式 1.圆周长公式 2.圆面积公式 3.扇形面积公式 4.弧长公式 5.弓形面积的计算方法 6.圆柱、圆锥的侧面展开图及相关计算 七、 点的轨迹 六条基本轨迹 八、 有关作图 1.作三角形的外接圆、内切圆 2.平分已知弧 3.作已知两线段的比例中项 4.等分圆周:4、8;6、3等分 九、 基本图形 十、 重要辅助线 1.作半径 2.见弦往往作弦心距 3.见直径往往作直径上的圆周角 4.切点圆心莫忘连 5.两圆相切公切线(连心线) 6.两圆相交公共弦 数学中考重点考点归纳 第 5 页 共 5 页。
