好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

高一数学必修一易错题集锦答案.doc

55页
  • 卖家[上传人]:m****
  • 文档编号:418763379
  • 上传时间:2024-01-26
  • 文档格式:DOC
  • 文档大小:1.56MB
  • / 55 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.------------------------------------------author------------------------------------------date高一数学必修一易错题集锦答案高一数学必修一易错题集锦答案高一数学必修一易错题集锦答案1. 已知集合M={y|y =x2+1,x∈R},N={y|y =x+1,x∈R},则M∩N=( )解:M={y|y=x2+1,x∈R}={y|y≥1}, N={y|y=x+1,x∈R}={y|y∈R}.∴M∩N={y|y≥1}∩{y|(y∈R)}={y|y≥1}, 注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x|y=x2+1}、{y|y=x2+1,x∈R}、{(x,y)|y=x2+1,x∈R},这三个集合是不同的.2 .已知A={x|x2-3x+2=0},B={x|ax-2=0}且A∪B=A,求实数a组成的集合C.解:∵A∪B=A ∴BA 又A={x|x2-3x+2=0}={1,2}∴B=或∴C={0,1,2} 3 。

      已知mA,nB, 且集合A=,B=,又C=,则有:m+n (填A,B,C中的一个)解:∵mA, ∴设m=2a1,a1Z, 又∵n,∴n=2a2+1,a2 Z ,∴m+n=2(a1+a2)+1,而a1+a2 Z , ∴m+nB 4 已知集合A={x|x2-3x-10≤0},集合B={x|p+1≤x≤2p-1}.若BA,求实数p的取值范围.解:①当B≠时,即p+1≤2p-1p≥2.由BA得:-2≤p+1且2p-1≤5.由-3≤p≤3.∴ 2≤p≤3②当B=时,即p+1>2p-1p<2.由①、②得:p≤3.点评:从以上解答应看到:解决有关A∩B=、A∪B=,AB等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题.5 已知集合A={a,a+b,a+2b},B={a,ac,ac2}.若A=B,求c的值.分析:要解决c的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式. 解:分两种情况进行讨论. (1)若a+b=ac且a+2b=ac2,消去b得:a+ac2-2ac=0,a=0时,集合B中的三元素均为零,和元素的互异性相矛盾,故a≠0.∴c2-2c+1=0,即c=1,但c=1时,B中的三元素又相同,此时无解.(2)若a+b=ac2且a+2b=ac,消去b得:2ac2-ac-a=0,∵a≠0,∴2c2-c-1=0,即(c-1)(2c+1)=0,又c≠1,故c=-.点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验.6 设A是实数集,满足若a∈A,则A,且1ÏA.⑴若2∈A,则A中至少还有几个元素?求出这几个元素⑵A能否为单元素集合?请说明理由.⑶若a∈A,证明:1-∈A.⑷求证:集合A中至少含有三个不同的元素.解:⑴2∈A Þ -1∈A Þ ∈A Þ 2∈A∴ A中至少还有两个元素:-1和⑵如果A为单元素集合,则a=即=0该方程无实数解,故在实数范围内,A不可能是单元素集⑶a∈A Þ ∈A Þ ∈AÞA,即1-∈A⑷由⑶知a∈A时,∈A, 1-∈A .现在证明a,1-, 三数互不相等.①若a=,即a2-a+1=0 ,方程无解,∴a≠②若a=1-,即a2-a+1=0,方程无解∴a≠1- ③若1- =,即a2-a+1=0,方程无解∴1-≠.综上所述,集合A中至少有三个不同的元素.点评:⑷的证明中要说明三个数互不相等,否则证明欠严谨. 7 设M={a,b,c},N={-2,0,2},求(1)从M到N的映射种数;   (2)从M到N的映射满足 (a)>(b)≥f(c),试确定这样的映射的种数.解:(1)由于M={a,b,c},N={-2,0,2},结合映射的概念,有一共有27个映射(2)符合条件的映射共有4个8.已知函数的定义域为[0,1],求函数的定义域解:由于函数的定义域为[0,1],即∴满足,∴的定义域是[-1,0]   9根据条件求下列各函数的解析式:(1)已知是二次函数,若,求.(2)已知,求(3)若满足求解:(1)本题知道函数的类型,可采用待定系数法求解设=由于得,又由,∴即   因此:=(2)本题属于复合函数解析式问题,可采用换元法求解设∴=  ()(3)由于为抽象函数,可以用消参法求解 用代可得:与      联列可消去得:=.点评:求函数解析式(1)若已知函数的类型,常采用待定系数法;(2)若已知表达式,常采用换元法或采用凑合法;(3)若为抽象函数,常采用代换后消参法.10 已知,试求的最大值.分析:要求的最大值,由已知条件很快将变为一元二次函数然后求极值点的值,联系到,这一条件,既快又准地求出最大值.解 由 得又当时,有最大值,最大值为点评:上述解法观察到了隐蔽条件,体现了思维的深刻性.大部分学生的作法如下:由 得 当时,取最大值,最大值为这种解法由于忽略了这一条件,致使计算结果出现错误.因此,要注意审题,不仅能从表面形式上发现特点,而且还能从已知条件中发现其隐蔽条件,既要注意主要的已知条件,又要注意次要条件,甚至有些问题的观察要从相应的图像着手,这样才能正确地解题..11设是R上的函数,且满足并且对任意的实数都有,求的表达式.解法一:由,设,得,所以=解法二:令,得即又将用代换到上式中得=点评:所给函数中含有两个变量时,可对这两个变量交替用特殊值代入,或使这两个变量相等代入,再用已知条件,可求出未知的函数.具体取什么特殊值,根据题目特征而定. 12判断函数的奇偶性.解:有意义时必须满足即函数的定义域是{|},由于定义域不关于原点对称,所以该函数既不是奇函数也不是偶函数13 判断的奇偶性.正解:方法一:∵===-∴是奇函数 方法二:∵=  ∴是奇函数14函数y=的单调增区间是_________.解:y=的定义域是,又在区间上增函数,在区间是减函数,所以y=的增区间是15已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)<0,求x的取值范围.解:由,故03-x2,即x2+x-6>0,解得x>2或x<-3,综上得20,1-x1x2>0,∴>0,又(x2-x1)-(1-x2x1)=(x2-1)(x1+1)<0∴x2-x1<1-x2x1,∴0<<1,由题意知f()<0,即f(x2)0, 且a2-a+1=(a-)2+>0, ∴ 1+2x+4x·a>0, a>,当x∈(-∞, 1]时, y=与y=都是减函数,∴ y=在(-∞, 1]上是增函数,max=-,∴ a>-, 故a的取值范围是(-, +∞). 点评:发掘、提炼多变元问题中变元间的相互依存、相互制约的关系、反客为主,主客换位,创设。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.