
《算法设计与分析》历年期末试题整理-含答案-.docx
13页《算法设计与分析》历年期末试题整理(含答案) (1)用计算机求解问题的步骤: 1、问题分析 2、数学模型建立 3、算法设计与选择 4、算法指标 5、算法分析 6、算法实现 7、程序调试 8、结果整理文档编制 (2) 算法定义:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程 (3) 算法的三要素 1、操作 2、控制结构 3、数据结构算法具有以下 5 个属性: 有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成 确定性:算法中每一条指令必须有确切的含义不存在二义性只有一个入口和一个出口 可行性:一个算法是可行的就是算法描述的操作是可以通过已经实现的基本运算执行有限次来实现的 输入:一个算法有零个或多个输入,这些输入取自于某个特定对象的集合 输出:一个算法有一个或多个输出,这些输出同输入有着某些特定关系的量 算法设计的质量指标: 正确性:算法应满足具体问题的需求; 可读性:算法应该好读,以有利于读者对程序的理解; 健壮性:算法应具有容错处理,当输入为非法数据时,算法应对其作出反应,而不是产生莫名其妙的输出结果 效率与存储量需求:效率指的是算法执行的时间;存储量需求指算法执行过程中所需要的最大存储空间。
一般这两者与问题的规模有关 经常采用的算法主要有迭代法、分而治之法、贪婪法、动态规划法、回溯法、分支限界法 迭代法 也称“辗转法”,是一种不断用变量的旧值递推出新值的解决问题的方法 利用迭代算法解决问题,需要做好以下三个方面的工作: 一、确定迭代模型在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量 二、 建立迭代关系式所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成 三、 对迭代过程进行控制在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题不能让迭代过程无休止地重复执行下去迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件 编写计算斐波那契(Fibonacci)数列的第 n 项函数 fib(n) 斐波那契数列为:0、1、1、2、3、……,即: fib(0)=0; fib(1)=1; fib(n)=fib(n-1)+fib(n-2) (当n>1时)。
写成递归函数有: int fib(int n) { if (n==0) return 0; if (n==1) return 1; if (n>1) return fib(n-1)+fib(n-2); } 一个饲养场引进一只刚出生的新品种兔子,这种兔子从出生的下一个月开始,每月新生一只兔子,新生的兔子也如此繁殖如果所有的兔子都不死去,问到第 12 个月时,该饲养场共有兔子多少只? 分析: 这是一个典型的递推问题我们不妨假设第 1 个月时兔子的只数为 u 1 ,第 2 个月时兔子的只数为 u 2 ,第 3 个月时兔子的只数为 u 3 ,…… 根据题意,“这种兔子从出生的下一个月开始,每月新生一只兔子”,则有 u 1 = 1 , u 2 = u 1 + u 1 × 1 = 2 , u 3 = u 2 + u 2 × 1 = 4 ,…… 根据这个规律,可以归纳出下面的递推公式: u n = u n - 1 × 2 (n ≥ 2) 对应 u n 和 u n - 1 ,定义两个迭代变量 y 和 x ,可将上面的递推公式转换成如下迭代关系: y=x*2 x=y 让计算机对这个迭代关系重复执行 11 次,就可以算出第 12 个月时的兔子数。
参考程序如下: cls 分而治之法 1、分治法的基本思想 x=1 for i=2 to 12 y=x*2 x=y next i print y end 任何一个可以用计算机求解的问题所需的计算时间都与其规模 N 有关问题的规模越小,越容易直接求解,解题所需的计算时间也越少例如,对于 n 个元素的排序问题,当 n=1 时,不需任何计算;n=2 时,只要作一次比较即可排好序;n=3 时只要作 3 次比较即可,…而当 n 较大时,问题就不那么容易处理了要想直接解决一个规模较大的问题,有时是相当困难的 分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之 分治法所能解决的问题一般具有以下几个特征: (1)该问题的规模缩小到一定的程度就可以容易地解决; (2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质; (3) 利用该问题分解出的子问题的解可以合并为该问题的解; (4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
3、分治法的基本步骤 分治法在每一层递归上都有三个步骤: (1) 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题; (2) 解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题; (3) 合并:将各个子问题的解合并为原问题的解 快速排序 在这种方法中, n 个元素被分成三段(组):左段 l e f t,右段 r i g h t 和中段 m i d d l e中段仅包含一个元素左段中各元素都小于等于中段元素,右段中各元素都大于等于中段元素因此 l e f t 和 r i g h t 中的元素可以独立排序,并且不必对 l e f t 和 r i g h t 的排序结果进行合并m i d d l e 中的元素被称为支点( p i v o t )图 1 4 - 9 中给出了快速排序的伪代码 / /使用快速排序方法对 a[ 0 :n- 1 ]排序 从 a[ 0 :n- 1 ]中选择一个元素作为 m i d d l e,该元素为支点 把余下的元素分割为两段 left 和 r i g h t,使得 l e f t 中的元素都小于等于支点,而 right 中的元素都大于等于支点 递归地使用快速排序方法对 left 进行排序 递归地使用快速排序方法对 right 进行排序 所得结果为 l e f t + m i d d l e + r i g h t 考察元素序列[ 4 , 8 , 3 , 7 , 1 , 5 , 6 , 2 ]。
假设选择元素 6 作为支点,则 6 位于 m i d d l e; 4,3,1,5,2 位于 l e f t;8,7 位于 r i g h t当 left 排好序后,所得结果为 1,2,3,4, 5;当 r i g h t 排好序后,所得结果为 7,8把 right 中的元素放在支点元素之后, l e f t 中的元素放在支点元素之前,即可得到最终的结果[ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ] 把元素序列划分为 l e f t、m i d d l e 和 r i g h t 可以就地进行(见程序 1 4 - 6)在程序 1 4 - 6 中,支点总是取位置 1 中的元素也可以采用其他选择方式来提高排序性能,本章稍解决党委自身和基层党支部存在的的突出问题,发挥各村、社区、机关单位党支部在当前城市征迁、园区建设、招商引资、服务群众、维护稳定的作用,我镇党委高度重视,制定了切合临淮实际的活动实施方案,按照中央规定的活动步骤和要求扎实有效的开展了基层组织建设年活动 13 后部分将给出这样一种选择 程序 14-6 快速排序 template
制定决策的依据称为贪婪准则 贪婪法是一种不追求最优解,只希望得到较为满意解的方法贪婪法一般可以快速得到满意的解,因为它省去了为找最优解要穷尽所有可能而必须耗费的大量时间贪婪法常以当前情况为基础作最优选择,而不考虑各种可能的整体情况,所以贪婪法不要回溯 【问题】 背包问题 问题描述:有不同价值、不同重量的物品 n 件,求从这 n 件物品中选取一部分物品的选择方案,使选中物品的总重量不超过指定的限制重量,但选中物品的价值之和最大 #include












