好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

数学年谱数学家故事.doc

17页
  • 卖家[上传人]:红***
  • 文档编号:197607542
  • 上传时间:2021-09-25
  • 文档格式:DOC
  • 文档大小:55.50KB
  • / 17 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 数学年谱数学家故事 公元前 约公元前40____年,中国西安半坡的陶器上出现数字刻符 公元前3000~前17____年,巴比伦的泥版上出现数学记载 公元前27____年,中国黄帝时代传说隶首做算数之说,大挠发明了甲子 公元前25____年前,据中国战国时尸佼著《尸子》记载:“古者,陲(注:传说为黄帝或尧时人)为规、矩、准、绳,使天下仿焉”这相当于在已有“圆,方、平、直”等形的概念 公元前21____年,中国夏朝出现象征吉祥的河图洛书纵横图,即为“九宫算”,这被认为是现代“组合数学”最古老的发现 美索不达米亚人已有了乘法表,其中使用着六十进位制的算法 公元前1900~前1600,古埃及的纸草书上出现数学记载,已有基于十进制的记数法,将乘法简化为加法的算术、分数计算法并已有三角形及圆的面积、正方角锥体、锥台体积的度量法等 公元前1950年,巴比伦人能解二个变数的一次和二次方程,已经知道“勾股定理” 公元前14____年,中国殷代甲骨文卜辞记录已有十进制记数,最大数字是三万 公元前1050年,在中国的西周时期,“九数”成为“国子”的必修课程之一 公元前六世纪,古希腊的泰勒斯发展了初等几何学,开始证明几何命题。

      古希腊毕达哥拉斯学派认为数是万物的本原,宇宙的组织是数及其关系的和谐体系证明了勾股定理,发现了无理数,引起了所谓第一次数学危机 印度人求出=1.4142156 公元前462年左右,意大利的埃利亚学派的芝诺等人指出了在运动和变化中的各种矛盾,提出了飞矢不动等有关时间、空间和数的芝诺悖理(古希腊 巴门尼德、芝诺等) 公元前五世纪,古希腊丘斯的希波克拉底研究了以直线及圆弧形所围成的平面图形的面积,指出相似弓形的面积与其弦的平方成正比开始把几何命题按科学方式排列 公元前四世纪,古希腊的欧多克斯把比例论推广到不可通约量上,发现了“穷竭法”开始在数学上作出以公理为依据的演绎整理 古希腊德谟克利特学派用“原子法”计算面积和体积,一个线段、一个面积或一个体积被设想为由很多不可分的“原子”所组成提出圆锥曲线,得到了三次方程式的最古老的解法 古希腊的亚里士多德等建立了亚里士多德学派,开始对数学、动物学等进行了综合的研究 公元前4____年,中国战国时期的《墨经》中记载了一些几何学的义理 公元前380年,古希腊柏拉图学派指出数学对训练思维的作用,研究正多面体、不可公度量 公元前350年,古希腊梅纳克莫斯发现三种圆锥曲线,并用以解立方体问题。

      古希腊色诺科拉底开始编写几何学的历史古希腊的塞马力达斯开始世界简单方程组 公元前3____年,古希腊的欧德姆斯开始编写数学史 公元前三世纪,古希腊欧几里得的《几何学原本》十三卷发表,把前人和他本人的发现系统化,确立几何学的逻辑体系,为世界上最早的公理化数学著作 公元前三世纪,古希腊的阿基米德研究了曲线图形和曲面体所围成的面积、体积;研究了抛物面、双曲面、椭圆面,讨论了圆柱、圆锥和半球之关系,还研究了螺线 战国时期的中国,筹算成为当时的主要计算方法;出现《庄子》、《考工记》记载中的极限概念、分数运算法、特殊角度概念及对策论的例证 公元前2____年,古希腊的埃拉托色尼提出素数概念,并发明了寻找素数的筛法 公元前三至前二世纪,古希腊的阿波罗尼发表了八本《圆锥曲线学》,这是最早关于椭圆、抛物线和双曲线的论著 公元前170年,湖北出现竹简算书《算数书》 公元前150年,古希腊的希帕恰斯开始研究球面三角,奠定三角术的基础 约公元前一世纪,中国的《周髀算经》发表其中阐述了“盖天说”和四分历法,使用分数算法和开方法等 公元元年 ~ 公元10____年 公元50~1____年,继西汉张苍、耿寿昌删补校订之后,东汉时纂编成《九章算术》,这是中国最早的数学专著,收集了246个问题的解法。

      公元75年,古希腊的海伦研究面积、体积计算方法、开方法,提出海伦公式 一世纪左右,古希腊的梅内劳发表《球学》,其中包括球的几何学,并附有球面三角形的讨论 古希腊的希隆写了关于几何学的、计算的和力学科目的百科全书在其中的《度量论》中,以几何形式推算出三角形面积的“希隆公式” 1____年左右,古希腊的尼寇马克写了《算术引论》一书,此后算术开始成为独立学科 150年左右,古希腊的托勒密著《数学汇编》,求出圆周率为3.14166,并提出透视投影法与球面上经纬度的讨论,这是古代坐标的示例 三世纪时,古希腊的丢番都写成代数著作《算术》共十三卷,其中六卷保留至今,解出了许多定和不定方程式 三世纪至四世纪,魏晋时期,中国的赵爽在《勾股圆方图注》中列出了关于直角三角形三边之间关系的命题共21条 中国的刘徽发明“割圆术”,并算得圆周率为3.1416;著《海岛算经》,论述了有关测量和计算海岛的距离、高度的方法 四世纪时,古希腊帕普斯的几何学著作《数学集成》问世,这是古希腊数学研究的手册 约463年,中国的祖冲之算出了圆周率的近似值到第七位小数,这比西方早了一千多年 466年~485年,中国三国时期的《张邱建算经》成书。

      五世纪,印度的阿耶波多著书研究数学和天文学,其中讨论了一次不定方程式的解法、度量术和三角学等,并作正弦表 550年,中国南北朝的甄鸾撰《五草算经》、《五经算经》、《算术记遗》 六世纪,中国六朝时,中国的祖(日恒)提出祖氏定律:若二立体等高处的截面积相等,则二者体积相等西方直到十七世纪才发现同一定律,称为卡瓦列利原理 隋代《皇极历法》内,已用“内插法”来计算日、月的正确位置(中国 刘焯) 6____年,中国唐朝的王孝通著《辑古算经》,解决了大规模土方工程中提出的三次方程求正根的问题 6____年,印度的婆罗摩笈多研究了定方程和不定方程、四边形、圆周率、梯形和序列给出了方程a_+by=c(a,b,c是整数)的第一个一般解 656年,中国唐代李淳风等奉旨著《“十部算经”注释》,作为国子监算学馆的课本十部算经”指:《周髀》《九章算术》《海岛算经》《张邱建算经》《五经算术》等 7____年,中国唐朝开元年间,僧一行编成《大衍历》,建立了不等距的内插公式 8____年,阿拉伯的阿尔花刺子模发表了《印度计数算法》,使西欧熟悉了十进位制 850年,印度的摩珂毗罗提出岭的运算法则 约9____年,阿拉伯的阿尔巴塔尼提出正切和余切概念,造出从0o到90o的余切表,用sine标记正弦,证明了正弦定理。

      公元10____年 ~ 17____年 1000~10____年,中国北宋的刘益著《议古根源》,提出了“正负开方术” 1050年,中国宋朝的贾宪在《黄帝九章算术细草》中,创造了开任意高次幂的“增乘开方法”,并列出了二项式定理系数表,这是现代“组合数学”的早期发现后人所称的“杨辉三角”即指此法 1086~1093年,中国宋朝的沈括在《梦溪笔谈》中提出“隙积术”和“会圆术”,开始高阶等差级数的研究 1079年,阿拉伯的卡牙姆完成了一部系统研究三次方程的书《代数学》,用圆锥曲线解三次方程 十一世纪,阿拉伯的阿尔卡尔希第一次解出了二次方程的根 十一世纪,埃及的阿尔海赛姆解决了“海赛姆”问题,即要在圆的平面上两点作两条线相交于圆周上一点,并与在该点的法线成等角 十二世纪,印度的拜斯迦罗著《立刺瓦提》一书,这是东方算术和计算方面的重要著作 12____年,意大利的裴波那契发表《计算之书》,把印度阿拉伯记数法介绍到西方 12____年,意大利的裴波那契发表《几何学实习》一书,介绍了许多阿拉伯资料中没有的示例 1247年,中国宋朝的秦九韶著《数书九章》共十八卷,推广了“增乘开方法”。

      书中提出的联立一次同余式的解法,比西方早五百七十余年 1248年,中国宋朝的李治著《测圆海镜》十二卷,这是第一部系统论述“天元术”的著作 1261年,中国宋朝的杨辉著《详解九章算法》,用“垛积术”求出几类高阶等差级数之和 1274年,中国宋朝的杨辉发表《乘除通变本末》,叙述“九归”捷法,介绍了筹算乘除的各种运算法 1280年,元朝《授时历》用招差法编制日月的方位表(中国 王恂、郭守敬等) 十四世纪中叶前,中国开始应用珠算盘,并逐渐代替了筹算 13____年,中国元朝的朱世杰著《四元玉鉴》三卷,把“天元术”推广为“四元术” 1464年,德国的约米勒在《论各种三角形》(15____年出版)中,系统地总结了三角学 1489年,德国的魏德曼用“+”、“-”表示正负 1494年,意大利的帕奇欧里发表《算术集成》,反映了当时所知道的关于算术、代数和三角学的知识 15____年,荷兰的贺伊克用“+”、“-”作为加减运算的符号 15____年,意大利的塔塔利亚发现三次方程的解法 1540年,英国的雷科德用“=”表示相等 1545年,意大利的卡尔达诺、费尔诺在《大法》中发表了求三次方程一般代数解的公式。

      1550~1572年,意大利的邦别利出版《代数学》,其中引入了虚数,完全解决了三次方程的代数解问题 1585年,荷兰的斯蒂文提出分数指数概念与符号;系统导入了十进制分数与十进制小数的意义、计算法及表示法 1591年左右,德国的韦达在《美妙的代数》中首次使用字母表示数字系数的一般符号,推进了代数问题的一般讨论 1596年,德国的雷蒂卡斯从直角三角形的边角关系上定义了6个三角函数 1596~16____年,德国的奥脱、皮提斯库斯完成了六个三角函数的每间隔10秒的十五位小数表 16____年,英国的耐普尔制定了对数,做出第一张对数表,只做出圆形计算尺、计算棒 16____年,德国的开卜勒发表《酒桶的立体几何学》,研究了圆锥曲线旋转体的体积 16____年,意大利的卡瓦列利发表《不可分连续量的几何学》,书中避免无穷小量,用不可分量制定了一种简单形式的微积分 16____年,法国的笛卡尔出版《几何学》,提出了解析几何,把变量引进数学,成为“数学中的转折点” 16____年,法国的费尔玛开始用微分法求极大、极小问题 意大利的伽里略发表《关于两种新科学的数学证明的论说》,研究距离、速度和加速度之间的关系,提出了无穷集合的概念,这本书被认为是伽里略重要的科学成就。

      16____年,法国的迪沙格发表了《企图研究圆锥和平面的相交所发生的事的草案》,这是近世射影几何学的早期工作 1641年,法国的帕斯卡发现关于圆锥内接六边形的“帕斯卡定理” 1649年,法国的帕斯卡制成帕斯卡计算器,它是近代计算机的先驱 1654年,法国的帕斯卡、费尔玛研究了概率论的基础 1655年,英国的瓦里斯出版《无穷算术》一书,第一次把代数学扩展到分析学 1657年,荷兰的惠更斯发表了关于概率论的早期论文《论机会游戏的演算》 1658年,法国的帕斯卡出版《摆线通论》,对“摆线”进行了充分的研究 1665~1676年,牛顿(1665~1666年)先于莱布尼茨(1673~1676年)制定了微积分,莱布尼茨(1684~1686年)早于牛顿(1704~17____年)发表了微积分 1669年,英。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.