
椭圆双曲线抛物线经典求法及历年真题.docx
18页精选优质文档-----倾情为你奉上解决圆锥曲线常用的方法 1、定义法(1)椭圆有两种定义第一定义中,r1+r2=2a第二定义中,r1=ed1 r2=ed2 (2)双曲线有两种定义第一定义中,,当r1>r2时,注意r2的最小值为c-a:第二定义中,r1=ed1,r2=ed2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x1,y1),B(x2,y2),弦AB中点为M(x0,y0),将点A、B坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1)与直线相交于A、B,设弦AB中点为M(x0,y0),则有。
(2)与直线l相交于A、B,设弦AB中点为M(x0,y0)则有(3)y2=2px(p>0)与直线l相交于A、B设弦AB中点为M(x0,y0),则有2y0k=2p,即y0k=p.4、数形结合法 解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来考虑问题,在解题时要充分利用代数运算的严密性与几何论证的直观性,尤其是将某些代数式子利用其结构特征,想象为某些图形的几何意义而构图,用图形的性质来说明代数性质 如“2x+y”,令2x+y=b,则b表示斜率为-2的直线在y轴上的截距;如“x2+y2”,令,则d表示点P(x,y)到原点的距离;又如“”,令=k,则k表示点P(x、y)与点A(-2,3)这两点连线的斜率……5、参数法(1)点参数利用点在某曲线上设点(常设“主动点”),以此点为参数,依次求出其他相关量,再列式求解如x轴上一动点P,常设P(t,0);直线x-2y+1=0上一动点P除设P(x1,y1)外,也可直接设P(2y,-1,y1)(2)斜率为参数 当直线过某一定点P(x0,y0)时,常设此直线为y-y0=k(x-x0),即以k为参数,再按命题要求依次列式求解等。
3)角参数当研究有关转动的问题时,常设某一个角为参数,尤其是圆与椭圆上的动点问题6、代入法这里所讲的“代入法”,主要是指条件的不同顺序的代入方法,如对于命题:“已知条件P1,P2求(或求证)目标Q”,方法1是将条件P1代入条件P2,方法2可将条件P2代入条件P1,方法3可将目标Q以待定的形式进行假设,代入P1,P2,这就是待定法不同的代入方法常会影响解题的难易程度,因此要学会分析,选择简易的代入法例2、F是椭圆的右焦点,A(1,1)为椭圆内一定点,P为椭圆上一动点1)的最小值为 (2)的最小值为 分析:PF为椭圆的一个焦半径,常需将另一焦半径或准线作出来考虑问题解:(1)4- 设另一焦点为,则(-1,0)连A,P 当P是A的延长线与椭圆的交点时, 取得最小值为4-2)作出右准线l,作PH⊥l交于H,因a2=4,b2=3,c2=1, a=2,c=1,e=,∴∴当A、P、H三点共线时,其和最小,最小值为例3、动圆M与圆C1:(x+1)2+y2=36内切,与圆C2:(x-1)2+y2=4外切,求圆心M的轨迹方程分析:作图时,要注意相切时的“图形特征”:两个圆心与切点这三点共线(如图中的A、M、C共线,B、D、M共线)。
列式的主要途径是动圆的“半径等于半径”(如图中的)解:如图,,∴∴ (*)∴点M的轨迹为椭圆,2a=8,a=4,c=1,b2=15轨迹方程为点评:得到方程(*)后,应直接利用椭圆的定义写出方程,而无需再用距离公式列式求解,即列出,再移项,平方,…相当于将椭圆标准方程推导了一遍,较繁琐!例4、△ABC中,B(-5,0),C(5,0),且sinC-sinB=sinA,求点A的轨迹方程分析:由于sinA、sinB、sinC的关系为一次齐次式,两边乘以2R(R为外接圆半径),可转化为边长的关系解:sinC-sinB=sinA 2RsinC-2RsinB=·2RsinA∴即 (*)∴点A的轨迹为双曲线的右支(去掉顶点)∵2a=6,2c=10∴a=3, c=5, b=4所求轨迹方程为 (x>3)点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支)例5、定长为3的线段AB的两个端点在y=x2上移动,AB中点为M,求点M到x轴的最短距离分析:(1)可直接利用抛物线设点,如设A(x1,x12),B(x2,X22),又设AB中点为M(x0y0)用弦长公式及中点公式得出y0关于x0的函数表达式,再用函数思想求出最短距离。
2)M到x轴的距离是一种“点线距离”,可先考虑M到准线的距离,想到用定义法解法一:设A(x1,x12),B(x2,x22),AB中点M(x0,y0)①②③则由①得(x1-x2)2[1+(x1+x2)2]=9即[(x1+x2)2-4x1x2]·[1+(x1+x2)2]=9 ④由②、③得2x1x2=(2x0)2-2y0=4x02-2y0代入④得 [(2x0)2-(8x02-4y0)]·[1+(2x0)2]=9∴, ≥ 当4x02+1=3 即 时,此时法二:如图,∴, 即,∴, 当AB经过焦点F时取得最小值∴M到x轴的最短距离为点评:解法一是列出方程组,利用整体消元思想消x1,x2,从而形成y0关于x0的函数,这是一种“设而不求”的方法而解法二充分利用了抛物线的定义,巧妙地将中点M到x轴的距离转化为它到准线的距离,再利用梯形的中位线,转化为A、B到准线的距离和,结合定义与三角形中两边之和大于第三边(当三角形“压扁”时,两边之和等于第三边)的属性,简捷地求解出结果的,但此解法中有缺点,即没有验证AB是否能经过焦点F,而且点M的坐标也不能直接得出例6、已知椭圆过其左焦点且斜率为1的直线与椭圆及准线从左到右依次变于A、B、C、D、设f(m)=,(1)求f(m),(2)求f(m)的最值。
分析:此题初看很复杂,对f(m)的结构不知如何运算,因A、B来源于“不同系统”,A在准线上,B在椭圆上,同样C在椭圆上,D在准线上,可见直接求解较繁,将这些线段“投影”到x轴上,立即可得防 此时问题已明朗化,只需用韦达定理即可解:(1)椭圆中,a2=m,b2=m-1,c2=1,左焦点F1(-1,0)则BC:y=x+1,代入椭圆方程即(m-1)x2+my2-m(m-1)=0得(m-1)x2+m(x+1)2-m2+m=0∴(2m-1)x2+2mx+2m-m2=0设B(x1,y1),C(x2,y2),则x1+x2=-(2)∴当m=5时, 当m=2时,点评:此题因最终需求,而BC斜率已知为1,故可也用“点差法”设BC中点为M(x0,y0),通过将B、C坐标代入作差,得,将y0=x0+1,k=1代入得,∴,可见当然,解本题的关键在于对的认识,通过线段在x轴的“投影”发现是解此题的要点例3:直线l:ax+y+2=0平分双曲线的斜率为1的弦,求a的取值范围.①②分析:由题意,直线l恒过定点P(0,-2),平分弦即过弦中点,可先求出弦中点的轨迹,再求轨迹上的点M与点P的连线的斜率即-a的范围。
解:设A(x1,y1),B(x2,y2)是双曲线上的点,且AB的斜率为1,AB的中点为M(x0,y0)则: ①-②得即M(X0,y0)在直线9x-16y=0上由 9x-16y=0 得C,D ∴点M的轨迹方程为9x-16y=0(x<-或x>)kPD=由图知,当动直线l的斜率k∈时,l过斜率为1的弦AB的中点M,而k=-a∴a的取值范围为:点评:此题是利用代数运算与几何特征相结合的方法而解得的,由图得知,弦AB中点轨迹并不是一条直线(9x-16y=0),而是这条直线上的两条射线(无端点)再利用图形中的特殊点(射线的端点C、D)的属性(斜率)说明所求变量a的取值范围例6、求直线3x-4y+10=0与椭圆(a>0)有公共点时a的取值范围 分析:将直线方程代入椭圆方程消元得一元二次方程应有解,用判别式△≥0可求得a的取值范围也可考虑另一代入顺序,从椭圆方程出发设公共点P(用参数形式),代入直线方程,转化为三角问题:asinx+bcosx=c何时有解解法一:由直线方程3x-4y+10=0得代入椭圆方程得∴ △ ≥0,得解得,又a>0,∴ 解法二:设有公共点为P,因公共点P在椭圆上,利用椭圆方程设P(acos,sin)再代入直线方程得3acos-4sin+10=0 4sin-3acos=10。
令sinα=,cosα=,则sin(-α)= ,由 即sin2(-α)≤1得 ∴9a2≥84,a2≥(a>0)∴a≥点评:解法1,2给出了两种不同的条件代入顺序,其解法1的思路清晰,是常用方法,但运算量较大,对运算能力提出较高的要求,解法2先考虑椭圆,设公共点再代入直线,技巧性强,但运算较易,考虑一般关系:“设直线l:Ax+By+C=0与椭圆有公共点,求应满足的条件”此时,若用解法一则难于运算,而用解法二,设有公共点P,利用椭圆,设P(acos,bsin)代入直线方程得Aacos+Bbsin=-C∴时上式有解 ∴C2≤A2a2+B2b2因此,从此题我们可以体会到条件的代入顺序的重要性同步练习】1、已知:F1,F2是双曲线的左、右焦点,过F1作直线交双曲线左支于点A、B,若,△ABF2的周长为( )A、4a B、4a+m C、4a+2m D、4a-m 2、若点P到点F(4,0)的距离比它到直线x+5=0的距离小1,则P点的轨迹方程是 ( )A、y2=-16x B、y2=-32x C、y2=16x D、y2=32x3、已知△ABC的三边AB、BC、AC的长依次成等差数列,且,点B、C的坐标分别为(-1,0),(1,0),则顶点A的轨迹方程是( )A、 B、 C、 D、4、过原点的椭圆的一个焦点为F(1,0),其长轴长为4,则椭圆中心的轨迹方程是 ( )A、 B、C、 D、5、已知双曲线上一点M的横坐标为4,则点M到左焦点的距离是 6、抛物线y=2x2截一组斜率为2的平行直线,所得弦中点的轨迹方程是 7、已知抛物线y2=2x的弦AB所在直线过定点p(-2,0),则弦AB中点的轨迹方程是 8、过双曲线x2-y2=4的焦点且平行于虚轴的弦长为 。
